{"title":"基于超分子大循环的功能性有机共晶体。","authors":"Susu Ren, Guan-Yu Qiao and Jia-Rui Wu","doi":"10.1039/D4CS00654B","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 20","pages":" 10312-10334"},"PeriodicalIF":40.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular-macrocycle-based functional organic cocrystals\",\"authors\":\"Susu Ren, Guan-Yu Qiao and Jia-Rui Wu\",\"doi\":\"10.1039/D4CS00654B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.</p>\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\" 20\",\"pages\":\" 10312-10334\"},\"PeriodicalIF\":40.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d4cs00654b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d4cs00654b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences