{"title":"利用可见光从芳香族重氮化合物合成二氢金牛酮。","authors":"Xiuyuan Duan, Guojun Zheng, Gang Xiao","doi":"10.1021/acs.joc.4c01064","DOIUrl":null,"url":null,"abstract":"<p><p>Dihydroaurones, which are derivatives of aurones, exhibit similar biological activity. Although there are many synthetic methods for dihydroaurones, ecofriendly methodologies that circumvent the use of precious metals still need to be explored. In this work, a catalyst-free, visible-light-driven synthesis of dihydroaurones has been developed through the cyclization of aromatic diazo compounds. The reaction proceeded smoothly under mild conditions, resulting in a series of dihydroaurones in moderate to high yields. Mechanistic investigation suggests that this process involves a radical-pair Stevens rearrangement.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":" ","pages":"13026-13030"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible-Light-Driven Synthesis of Dihydroaurones from Aromatic Diazo Compounds.\",\"authors\":\"Xiuyuan Duan, Guojun Zheng, Gang Xiao\",\"doi\":\"10.1021/acs.joc.4c01064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dihydroaurones, which are derivatives of aurones, exhibit similar biological activity. Although there are many synthetic methods for dihydroaurones, ecofriendly methodologies that circumvent the use of precious metals still need to be explored. In this work, a catalyst-free, visible-light-driven synthesis of dihydroaurones has been developed through the cyclization of aromatic diazo compounds. The reaction proceeded smoothly under mild conditions, resulting in a series of dihydroaurones in moderate to high yields. Mechanistic investigation suggests that this process involves a radical-pair Stevens rearrangement.</p>\",\"PeriodicalId\":57,\"journal\":{\"name\":\"Journal of Organic Chemistry\",\"volume\":\" \",\"pages\":\"13026-13030\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.joc.4c01064\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c01064","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Visible-Light-Driven Synthesis of Dihydroaurones from Aromatic Diazo Compounds.
Dihydroaurones, which are derivatives of aurones, exhibit similar biological activity. Although there are many synthetic methods for dihydroaurones, ecofriendly methodologies that circumvent the use of precious metals still need to be explored. In this work, a catalyst-free, visible-light-driven synthesis of dihydroaurones has been developed through the cyclization of aromatic diazo compounds. The reaction proceeded smoothly under mild conditions, resulting in a series of dihydroaurones in moderate to high yields. Mechanistic investigation suggests that this process involves a radical-pair Stevens rearrangement.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.