{"title":"抗溶胀纳米封闭水凝胶大规模增强的电荷选择性、离子传输和渗透能量转换功能","authors":"Yi-Chuan Lin, Hong-Hsu Chen, Chien-Wei Chu, Li-Hsien Yeh","doi":"10.1021/acs.nanolett.4c03836","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m<sup>2</sup> with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.\",\"authors\":\"Yi-Chuan Lin, Hong-Hsu Chen, Chien-Wei Chu, Li-Hsien Yeh\",\"doi\":\"10.1021/acs.nanolett.4c03836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m<sup>2</sup> with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03836\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03836","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
开发一种同时具有增强离子选择性和渗透性的纳米流体膜以实现高性能渗透能量转换,在很大程度上还没有得到探索。在这里,我们通过在有序排列的纳米通道阵列膜内限制高空间电荷水凝胶来解决这一问题。纳米约束效应使水凝胶膜具有优异的抗溶胀特性。此外,实验和模拟结果表明,这种纳米融合水凝胶膜的阳离子选择性和离子传输特性大大增强。因此,通过混合模拟盐湖水(5 M NaCl)和河水(0.01 M NaCl),可以达到令人惊叹的高达 ∼52.1 W/m2 的功率密度和前所未有的 37.5% 能量转换效率。这两项效率指标都超过了大多数最先进的纳米流体膜。这项工作为设计高离子选择性膜以实现超快离子传输和高性能渗透能量收集提供了启示。
Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.
Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m2 with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.