Anastasiia S. Kuzenkova, Tatiana V. Plakhova, Roman D. Svetogorov, Elizaveta S. Kulikova, Alexander L. Trigub, Vasily O. Yapaskurt, Alexander V. Egorov, Andrey S. Toropov, Alexey A. Averin, Maria D. Shaulskaya, Dmitry M. Tsymbarenko, Anna Yu. Romanchuk and Stepan N. Kalmykov
{"title":"环境中被忽视的固相五价碳酸钚","authors":"Anastasiia S. Kuzenkova, Tatiana V. Plakhova, Roman D. Svetogorov, Elizaveta S. Kulikova, Alexander L. Trigub, Vasily O. Yapaskurt, Alexander V. Egorov, Andrey S. Toropov, Alexey A. Averin, Maria D. Shaulskaya, Dmitry M. Tsymbarenko, Anna Yu. Romanchuk and Stepan N. Kalmykov","doi":"10.1039/D4EN00283K","DOIUrl":null,"url":null,"abstract":"<p >KPuO<small><sub>2</sub></small>CO<small><sub>3</sub></small> solid phase precipitation from hexavalent plutonium (Pu(<small>VI</small>)) solution is discussed herein. The kinetic process of Pu(<small>V</small>)/potassium carbonate formation is widely investigated under constant control of Pu concentration in different oxidation states, redox potentials, and pH values. Synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy are employed for solid phase analysis. The crystal structure of KPuO<small><sub>2</sub></small>CO<small><sub>3</sub></small> is specified <em>via</em> the Rietveld method and extended X-ray absorption fine structure fitting. The stability area of Pu(<small>V</small>) potassium carbonate is discussed and a moderated Pourbaix diagram is presented.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 10","pages":" 4381-4390"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neglected solid phase pentavalent plutonium carbonate in the environment†\",\"authors\":\"Anastasiia S. Kuzenkova, Tatiana V. Plakhova, Roman D. Svetogorov, Elizaveta S. Kulikova, Alexander L. Trigub, Vasily O. Yapaskurt, Alexander V. Egorov, Andrey S. Toropov, Alexey A. Averin, Maria D. Shaulskaya, Dmitry M. Tsymbarenko, Anna Yu. Romanchuk and Stepan N. Kalmykov\",\"doi\":\"10.1039/D4EN00283K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >KPuO<small><sub>2</sub></small>CO<small><sub>3</sub></small> solid phase precipitation from hexavalent plutonium (Pu(<small>VI</small>)) solution is discussed herein. The kinetic process of Pu(<small>V</small>)/potassium carbonate formation is widely investigated under constant control of Pu concentration in different oxidation states, redox potentials, and pH values. Synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy are employed for solid phase analysis. The crystal structure of KPuO<small><sub>2</sub></small>CO<small><sub>3</sub></small> is specified <em>via</em> the Rietveld method and extended X-ray absorption fine structure fitting. The stability area of Pu(<small>V</small>) potassium carbonate is discussed and a moderated Pourbaix diagram is presented.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\" 10\",\"pages\":\" 4381-4390\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00283k\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00283k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了六价钚(Pu(VI))溶液中的 KPuO2CO3 固相沉淀。在恒定控制不同氧化态、氧化还原电位和 pH 值下的钚浓度的条件下,广泛研究了钚(V)/碳酸钾形成的动力学过程。固相分析采用了同步辐射 X 射线衍射、X 射线吸收光谱、高分辨率透射电子显微镜和扫描电子显微镜与能量色散 X 射线光谱。通过里特维尔德法和扩展 X 射线吸收精细结构拟合,确定了 KPuO2CO3 的晶体结构。讨论了钚(V)碳酸钾的稳定区,并给出了一个缓和的 Pourbaix 图。
Neglected solid phase pentavalent plutonium carbonate in the environment†
KPuO2CO3 solid phase precipitation from hexavalent plutonium (Pu(VI)) solution is discussed herein. The kinetic process of Pu(V)/potassium carbonate formation is widely investigated under constant control of Pu concentration in different oxidation states, redox potentials, and pH values. Synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy are employed for solid phase analysis. The crystal structure of KPuO2CO3 is specified via the Rietveld method and extended X-ray absorption fine structure fitting. The stability area of Pu(V) potassium carbonate is discussed and a moderated Pourbaix diagram is presented.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis