可生物降解纳米粒子帮助肠道微生物群落延缓抗生素耐药性的产生

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Genesis Herrera, Sachin Paudel, Simone Lupini, Carlos Astete, Cristina Sabliov and Debora Rodrigues
{"title":"可生物降解纳米粒子帮助肠道微生物群落延缓抗生素耐药性的产生","authors":"Genesis Herrera, Sachin Paudel, Simone Lupini, Carlos Astete, Cristina Sabliov and Debora Rodrigues","doi":"10.1039/D4EN00382A","DOIUrl":null,"url":null,"abstract":"<p >The antibiotic-nanoparticle combinatorial effects on gut microbiome diversity, abundance, and antibiotic resistance remain largely unknown. In the present study, we investigated the potential impacts of biodegradable nanocarriers after one biocompatible dose that could promote sustainable treatment against enteropathogens. Enrofloxacin (Enro), a common antibiotic used in livestock, was loaded into biodegradable synthetic poly(lactic-co-glycolic) acid (PLGA) and plant-based lignin (LIGNIN) nanoparticles. Anaerobic bioreactors containing fresh slurry collected from pig intestines were used to simulate the anaerobic gut microenvironment. Bioreactors were inoculated with empty NPs with concentrations identical to loaded nanoparticles and free Enro, PLGA (Enro) (PE), and LIGNIN(Enro) (LE) that present antimicrobial activity and non-cytotoxicity to pig intestinal cells. Slurry aliquots from the bioreactors were collected for RNA extraction after 24, 48, and 72 hours of exposure to the drug and nanocarriers for microbial 16S rRNA metatranscriptomics and resistome analysis. Our results showed that PLGA and PE microbial communities were similar over all periods despite containing Enro. The impact of LIGNIN on the microbial community was minimal since it was similar to the control. However, loaded LE significantly reduced the microbial diversity but maintained essential estimated metabolic functions. Free enrofloxacin affected the microbial community the most by decreasing the core gut microbiome diversity. Our results indicate that NP encapsulation of antibiotics delayed the increase in antibiotic resistance genes (ARG) expression between 24 and 72 hours compared to free Enro. These results demonstrate that the antibiotic treatment conveyed by NPs slows the rate of expression of ARG and reduces the adverse antibiotic effects on the gut microbial community.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable nanoparticles aid the gut microbial community in delaying antibiotic resistance emergence†\",\"authors\":\"Genesis Herrera, Sachin Paudel, Simone Lupini, Carlos Astete, Cristina Sabliov and Debora Rodrigues\",\"doi\":\"10.1039/D4EN00382A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The antibiotic-nanoparticle combinatorial effects on gut microbiome diversity, abundance, and antibiotic resistance remain largely unknown. In the present study, we investigated the potential impacts of biodegradable nanocarriers after one biocompatible dose that could promote sustainable treatment against enteropathogens. Enrofloxacin (Enro), a common antibiotic used in livestock, was loaded into biodegradable synthetic poly(lactic-co-glycolic) acid (PLGA) and plant-based lignin (LIGNIN) nanoparticles. Anaerobic bioreactors containing fresh slurry collected from pig intestines were used to simulate the anaerobic gut microenvironment. Bioreactors were inoculated with empty NPs with concentrations identical to loaded nanoparticles and free Enro, PLGA (Enro) (PE), and LIGNIN(Enro) (LE) that present antimicrobial activity and non-cytotoxicity to pig intestinal cells. Slurry aliquots from the bioreactors were collected for RNA extraction after 24, 48, and 72 hours of exposure to the drug and nanocarriers for microbial 16S rRNA metatranscriptomics and resistome analysis. Our results showed that PLGA and PE microbial communities were similar over all periods despite containing Enro. The impact of LIGNIN on the microbial community was minimal since it was similar to the control. However, loaded LE significantly reduced the microbial diversity but maintained essential estimated metabolic functions. Free enrofloxacin affected the microbial community the most by decreasing the core gut microbiome diversity. Our results indicate that NP encapsulation of antibiotics delayed the increase in antibiotic resistance genes (ARG) expression between 24 and 72 hours compared to free Enro. These results demonstrate that the antibiotic treatment conveyed by NPs slows the rate of expression of ARG and reduces the adverse antibiotic effects on the gut microbial community.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00382a\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00382a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素-纳米粒子组合对肠道微生物组多样性、丰度和抗生素耐药性的影响在很大程度上仍然未知。在本研究中,我们研究了生物可降解纳米载体在服用一次生物相容性剂量后可能产生的影响,这种载体可促进针对肠道病原体的可持续治疗。恩诺沙星(Enrofloxacin)是家畜常用的抗生素,它被载入可生物降解的合成聚乳酸-共聚乙醇酸(PLGA)和植物木质素(LIGNIN)纳米颗粒中。厌氧生物反应器装有从猪肠中收集的新鲜浆液,用于模拟厌氧肠道微环境。在生物反应器中接种与负载纳米粒子浓度相同的空纳米粒子以及游离 Enro、PLGA (Enro) (PE) 和 LIGNIN(Enro) (LE),它们对猪肠细胞具有抗菌活性和无细胞毒性。在药物和纳米载体暴露 24、48 和 72 小时后,收集生物反应器中的等分浆液提取 RNA,用于微生物 16S rRNA 转录组学和抗性组分析。结果表明,尽管含有 Enro,PLGA 和 PE 微生物群落在所有时间段内都是相似的。LIGNIN 对微生物群落的影响很小,因为它与对照组相似。然而,负载的 LE 大大降低了微生物的多样性,但保持了基本的估计代谢功能。游离恩诺沙星对微生物群落的影响最大,它降低了核心肠道微生物组的多样性。我们的研究结果表明,与游离恩诺相比,NP封装抗生素可延缓抗生素耐药基因(ARG)表达在24至72小时内的增加。这些结果表明,由 NPs 传达的抗生素治疗减缓了 ARG 的表达速度,减少了抗生素对肠道微生物群落的不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biodegradable nanoparticles aid the gut microbial community in delaying antibiotic resistance emergence†

Biodegradable nanoparticles aid the gut microbial community in delaying antibiotic resistance emergence†

The antibiotic-nanoparticle combinatorial effects on gut microbiome diversity, abundance, and antibiotic resistance remain largely unknown. In the present study, we investigated the potential impacts of biodegradable nanocarriers after one biocompatible dose that could promote sustainable treatment against enteropathogens. Enrofloxacin (Enro), a common antibiotic used in livestock, was loaded into biodegradable synthetic poly(lactic-co-glycolic) acid (PLGA) and plant-based lignin (LIGNIN) nanoparticles. Anaerobic bioreactors containing fresh slurry collected from pig intestines were used to simulate the anaerobic gut microenvironment. Bioreactors were inoculated with empty NPs with concentrations identical to loaded nanoparticles and free Enro, PLGA (Enro) (PE), and LIGNIN(Enro) (LE) that present antimicrobial activity and non-cytotoxicity to pig intestinal cells. Slurry aliquots from the bioreactors were collected for RNA extraction after 24, 48, and 72 hours of exposure to the drug and nanocarriers for microbial 16S rRNA metatranscriptomics and resistome analysis. Our results showed that PLGA and PE microbial communities were similar over all periods despite containing Enro. The impact of LIGNIN on the microbial community was minimal since it was similar to the control. However, loaded LE significantly reduced the microbial diversity but maintained essential estimated metabolic functions. Free enrofloxacin affected the microbial community the most by decreasing the core gut microbiome diversity. Our results indicate that NP encapsulation of antibiotics delayed the increase in antibiotic resistance genes (ARG) expression between 24 and 72 hours compared to free Enro. These results demonstrate that the antibiotic treatment conveyed by NPs slows the rate of expression of ARG and reduces the adverse antibiotic effects on the gut microbial community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信