可细化函数内插和 $$n_s$$ 步内插细分方案

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Bin Han
{"title":"可细化函数内插和 $$n_s$$ 步内插细分方案","authors":"Bin Han","doi":"10.1007/s10444-024-10192-x","DOIUrl":null,"url":null,"abstract":"<div><p>Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study <span>\\(n_s\\)</span>-step interpolatory <span>\\(\\textsf{M}\\)</span>-subdivision schemes and their interpolating <span>\\(\\textsf{M}\\)</span>-refinable functions with <span>\\(n_s\\in \\mathbb {N}\\cup \\{\\infty \\}\\)</span> and a dilation factor <span>\\(\\textsf{M}\\in \\mathbb {N}\\backslash \\{1\\}\\)</span>. We completely characterize <span>\\(\\mathscr {C}^m\\)</span>-convergence and smoothness of <span>\\(n_s\\)</span>-step interpolatory subdivision schemes and their interpolating <span>\\(\\textsf{M}\\)</span>-refinable functions in terms of their masks. Inspired by <span>\\(n_s\\)</span>-step interpolatory stationary subdivision schemes, we further introduce the notion of <i>r</i>-mask quasi-stationary subdivision schemes, and then we characterize their <span>\\(\\mathscr {C}^m\\)</span>-convergence and smoothness properties using only their masks. Moreover, combining <span>\\(n_s\\)</span>-step interpolatory subdivision schemes with <i>r</i>-mask quasi-stationary subdivision schemes, we can obtain <span>\\(r n_s\\)</span>-step interpolatory subdivision schemes. Examples and construction procedures of convergent <span>\\(n_s\\)</span>-step interpolatory <span>\\(\\textsf{M}\\)</span>-subdivision schemes are provided to illustrate our results with dilation factors <span>\\(\\textsf{M}=2,3,4\\)</span>. In addition, for the dyadic dilation <span>\\(\\textsf{M}=2\\)</span> and <span>\\(r=2,3\\)</span>, using <i>r</i> masks with only two-ring stencils, we provide examples of <span>\\(\\mathscr {C}^r\\)</span>-convergent <i>r</i>-step interpolatory <i>r</i>-mask quasi-stationary dyadic subdivision schemes.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolating refinable functions and \\\\(n_s\\\\)-step interpolatory subdivision schemes\",\"authors\":\"Bin Han\",\"doi\":\"10.1007/s10444-024-10192-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study <span>\\\\(n_s\\\\)</span>-step interpolatory <span>\\\\(\\\\textsf{M}\\\\)</span>-subdivision schemes and their interpolating <span>\\\\(\\\\textsf{M}\\\\)</span>-refinable functions with <span>\\\\(n_s\\\\in \\\\mathbb {N}\\\\cup \\\\{\\\\infty \\\\}\\\\)</span> and a dilation factor <span>\\\\(\\\\textsf{M}\\\\in \\\\mathbb {N}\\\\backslash \\\\{1\\\\}\\\\)</span>. We completely characterize <span>\\\\(\\\\mathscr {C}^m\\\\)</span>-convergence and smoothness of <span>\\\\(n_s\\\\)</span>-step interpolatory subdivision schemes and their interpolating <span>\\\\(\\\\textsf{M}\\\\)</span>-refinable functions in terms of their masks. Inspired by <span>\\\\(n_s\\\\)</span>-step interpolatory stationary subdivision schemes, we further introduce the notion of <i>r</i>-mask quasi-stationary subdivision schemes, and then we characterize their <span>\\\\(\\\\mathscr {C}^m\\\\)</span>-convergence and smoothness properties using only their masks. Moreover, combining <span>\\\\(n_s\\\\)</span>-step interpolatory subdivision schemes with <i>r</i>-mask quasi-stationary subdivision schemes, we can obtain <span>\\\\(r n_s\\\\)</span>-step interpolatory subdivision schemes. Examples and construction procedures of convergent <span>\\\\(n_s\\\\)</span>-step interpolatory <span>\\\\(\\\\textsf{M}\\\\)</span>-subdivision schemes are provided to illustrate our results with dilation factors <span>\\\\(\\\\textsf{M}=2,3,4\\\\)</span>. In addition, for the dyadic dilation <span>\\\\(\\\\textsf{M}=2\\\\)</span> and <span>\\\\(r=2,3\\\\)</span>, using <i>r</i> masks with only two-ring stencils, we provide examples of <span>\\\\(\\\\mathscr {C}^r\\\\)</span>-convergent <i>r</i>-step interpolatory <i>r</i>-mask quasi-stationary dyadic subdivision schemes.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10192-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10192-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

标准内插细分方案及其内插细化函数在 CAGD、数值 PDE 和近似理论中都很有意义。根据这些概念,我们引入并研究了具有 \(n_s\in \mathbb {N}cup \{\infty \}) 和扩张因子 \(\textsf{M}\in \mathbb {N}backslash \{1/}\)的 \(n_s\)-step 插值 \(textsf{M}\)-subdivision 方案及其插值 \(textsf{M}\)-refinable 函数。我们完全描述了 \(mathscr {C}^m\) -步内插细分方案的收敛性和平滑性,以及它们的内插\(\textsf{M}\)-可细分函数的掩码。受 \(n_s\)-step 插值静止细分方案的启发,我们进一步引入了 r 掩码准静止细分方案的概念,然后仅使用它们的掩码来描述它们的 \(\mathscr {C}^m\)- 收敛性和平滑性。此外,将 \(n_s\)-step 插值细分方案与 r 掩码准稳态细分方案相结合,我们可以得到 \(r n_s\)-step 插值细分方案。我们提供了收敛的 \(n_s\)-step 插值 \(\textsf{M}\)-subdivatory 方案的例子和构造过程,以说明我们在扩张因子 \(\textsf{M}=2,3,4\) 时的结果。此外,对于二元扩张((\textsf{M}=2\)和\(r=2,3\)),使用只有双环模板的r掩模,我们提供了\(\mathscr {C}^r\)-convergent r-step interpolatory r-mask quasi-stationary dyadic subdivision schemes的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolating refinable functions and \(n_s\)-step interpolatory subdivision schemes

Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study \(n_s\)-step interpolatory \(\textsf{M}\)-subdivision schemes and their interpolating \(\textsf{M}\)-refinable functions with \(n_s\in \mathbb {N}\cup \{\infty \}\) and a dilation factor \(\textsf{M}\in \mathbb {N}\backslash \{1\}\). We completely characterize \(\mathscr {C}^m\)-convergence and smoothness of \(n_s\)-step interpolatory subdivision schemes and their interpolating \(\textsf{M}\)-refinable functions in terms of their masks. Inspired by \(n_s\)-step interpolatory stationary subdivision schemes, we further introduce the notion of r-mask quasi-stationary subdivision schemes, and then we characterize their \(\mathscr {C}^m\)-convergence and smoothness properties using only their masks. Moreover, combining \(n_s\)-step interpolatory subdivision schemes with r-mask quasi-stationary subdivision schemes, we can obtain \(r n_s\)-step interpolatory subdivision schemes. Examples and construction procedures of convergent \(n_s\)-step interpolatory \(\textsf{M}\)-subdivision schemes are provided to illustrate our results with dilation factors \(\textsf{M}=2,3,4\). In addition, for the dyadic dilation \(\textsf{M}=2\) and \(r=2,3\), using r masks with only two-ring stencils, we provide examples of \(\mathscr {C}^r\)-convergent r-step interpolatory r-mask quasi-stationary dyadic subdivision schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信