{"title":"大洋中的漂浮物:揭示森林覆盖率变化和气候变化对浮游生物栖息地的影响","authors":"","doi":"10.1016/j.gloenvcha.2024.102917","DOIUrl":null,"url":null,"abstract":"<div><p>Natural floating objects (NLOGs) are a major component of the habitat of pelagic species. Since the 1990s, the number of floating objects in the open ocean has increased greatly as a result of the introduction of drifting fish aggregating devices (DFADs) by the industrial tropical tuna purse seine vessels. These changes, and their potential impacts on the species that associate with floating objects, remain poorly understood. If the habitat modifications induced by DFADs have been recently characterized and quantified, the impact of other human activities on the number of floating objects is poorly studied. Relying on lagrangian simulations at the scale of the whole Indian Ocean, from 2000 to 2019, we assess the potential modifications of the pelagic surface habitat that could originate from forest cover change and climate variations. We develop several scenarios, based on coastal and river forest cover, precipitations and river discharge, to simulate densities of NLOGs. Our results suggest no significant increase in average NLOG densities in the ocean and highlight important regional and seasonal variations of these densities driven by both forest cover change and precipitations. These preliminary findings underscore the limited understanding of this critical element of pelagic species habitat. Therefore, there is pressing need to intensify monitoring efforts for pelagic species habitat and raise awareness about potential impacts of habitat modifications on tuna and other pelagic species.</p></div>","PeriodicalId":328,"journal":{"name":"Global Environmental Change","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959378024001213/pdfft?md5=4c6ea8b227193921e5fd8adafffcf302&pid=1-s2.0-S0959378024001213-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Floating objects in the open ocean: Unveiling modifications of the pelagic habitat induced by forest cover change and climate variations\",\"authors\":\"\",\"doi\":\"10.1016/j.gloenvcha.2024.102917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural floating objects (NLOGs) are a major component of the habitat of pelagic species. Since the 1990s, the number of floating objects in the open ocean has increased greatly as a result of the introduction of drifting fish aggregating devices (DFADs) by the industrial tropical tuna purse seine vessels. These changes, and their potential impacts on the species that associate with floating objects, remain poorly understood. If the habitat modifications induced by DFADs have been recently characterized and quantified, the impact of other human activities on the number of floating objects is poorly studied. Relying on lagrangian simulations at the scale of the whole Indian Ocean, from 2000 to 2019, we assess the potential modifications of the pelagic surface habitat that could originate from forest cover change and climate variations. We develop several scenarios, based on coastal and river forest cover, precipitations and river discharge, to simulate densities of NLOGs. Our results suggest no significant increase in average NLOG densities in the ocean and highlight important regional and seasonal variations of these densities driven by both forest cover change and precipitations. These preliminary findings underscore the limited understanding of this critical element of pelagic species habitat. Therefore, there is pressing need to intensify monitoring efforts for pelagic species habitat and raise awareness about potential impacts of habitat modifications on tuna and other pelagic species.</p></div>\",\"PeriodicalId\":328,\"journal\":{\"name\":\"Global Environmental Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959378024001213/pdfft?md5=4c6ea8b227193921e5fd8adafffcf302&pid=1-s2.0-S0959378024001213-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Environmental Change\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959378024001213\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Environmental Change","FirstCategoryId":"6","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959378024001213","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Floating objects in the open ocean: Unveiling modifications of the pelagic habitat induced by forest cover change and climate variations
Natural floating objects (NLOGs) are a major component of the habitat of pelagic species. Since the 1990s, the number of floating objects in the open ocean has increased greatly as a result of the introduction of drifting fish aggregating devices (DFADs) by the industrial tropical tuna purse seine vessels. These changes, and their potential impacts on the species that associate with floating objects, remain poorly understood. If the habitat modifications induced by DFADs have been recently characterized and quantified, the impact of other human activities on the number of floating objects is poorly studied. Relying on lagrangian simulations at the scale of the whole Indian Ocean, from 2000 to 2019, we assess the potential modifications of the pelagic surface habitat that could originate from forest cover change and climate variations. We develop several scenarios, based on coastal and river forest cover, precipitations and river discharge, to simulate densities of NLOGs. Our results suggest no significant increase in average NLOG densities in the ocean and highlight important regional and seasonal variations of these densities driven by both forest cover change and precipitations. These preliminary findings underscore the limited understanding of this critical element of pelagic species habitat. Therefore, there is pressing need to intensify monitoring efforts for pelagic species habitat and raise awareness about potential impacts of habitat modifications on tuna and other pelagic species.
期刊介绍:
Global Environmental Change is a prestigious international journal that publishes articles of high quality, both theoretically and empirically rigorous. The journal aims to contribute to the understanding of global environmental change from the perspectives of human and policy dimensions. Specifically, it considers global environmental change as the result of processes occurring at the local level, but with wide-ranging impacts on various spatial, temporal, and socio-political scales.
In terms of content, the journal seeks articles with a strong social science component. This includes research that examines the societal drivers and consequences of environmental change, as well as social and policy processes that aim to address these challenges. While the journal covers a broad range of topics, including biodiversity and ecosystem services, climate, coasts, food systems, land use and land cover, oceans, urban areas, and water resources, it also welcomes contributions that investigate the drivers, consequences, and management of other areas affected by environmental change.
Overall, Global Environmental Change encourages research that deepens our understanding of the complex interactions between human activities and the environment, with the goal of informing policy and decision-making.