{"title":"将双乙酰丙酮酸镍(II)络合物锚定到 CuS 固定化 MOF 中以提高对替硝唑和甲硝唑的去除率","authors":"Saptarshi Roy, Soumya Ranjan Mishra, Vishal Gadore, Ankur Kanti Guha, Md. Ahmaruzzaman","doi":"10.1038/s41545-024-00375-w","DOIUrl":null,"url":null,"abstract":"Here in this study, a novel ternary CuS/HKUST‒1/Ni(acac)2 nano photocatalyst (CSHK‒Ni) was developed through a facile modification of HKUST‒1 MOF with Ni(acac)2 metal complex and by immobilizing CuS into the metal-organic framework (MOF). The incorporation of CuS, a narrow bandgap semiconductor, is anticipated to allow easy excitation by visible-light and improve the photocatalytic potential of the formulated catalyst which is validated by the decrease in the bandgap energy from 3.10 eV of pristine MOF to 2.19 eV. Moreover, the anchoring of the metal complex improves the light harvesting behavior by increased conjugation. Photoluminescence studies provided evidence of the effective separation of the photoinduced charge-carriers, reducing the rate of recombination and enhancing the photocatalytic potential of the CSHK‒Ni nanocomposite. The engineered catalyst displayed remarkable efficiency in the degradation of nitroimidazole containing antibiotics, Tinidazole (TNZ) and Metronidazole (MTZ), via H2O2 assisted AOP achieving a maximum photocatalytic efficiency of 95.87 ± 1.64% and 97.95 ± 1.33% in just 30 min under irradiation of visible light at optimum reaction conditions. The possible degradation pathway was elucidated based on the identification of ROS and degradation intermediates via HR‒LCMS and quenching experiments. Meanwhile, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were also examined, encompassing the discussing of various aspects including reaction conditions, influence of various oxidizing agents, competing species and dissolved organic substrates present in the wastewater, marking the novelty of the study. This research elucidated the role of the CSHK‒Ni nanocomposite as an interesting photocatalyst in the elimination of emerging nitroimidazole containing pharmaceutical pollutant under visible-light exposure, presenting an exciting novel avenue for a cleaner and greener environment in the days to come.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-26"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00375-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Anchoring Ni(II) bisacetylacetonate complex into CuS immobilized MOF for enhanced removal of tinidazole and metronidazole\",\"authors\":\"Saptarshi Roy, Soumya Ranjan Mishra, Vishal Gadore, Ankur Kanti Guha, Md. Ahmaruzzaman\",\"doi\":\"10.1038/s41545-024-00375-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here in this study, a novel ternary CuS/HKUST‒1/Ni(acac)2 nano photocatalyst (CSHK‒Ni) was developed through a facile modification of HKUST‒1 MOF with Ni(acac)2 metal complex and by immobilizing CuS into the metal-organic framework (MOF). The incorporation of CuS, a narrow bandgap semiconductor, is anticipated to allow easy excitation by visible-light and improve the photocatalytic potential of the formulated catalyst which is validated by the decrease in the bandgap energy from 3.10 eV of pristine MOF to 2.19 eV. Moreover, the anchoring of the metal complex improves the light harvesting behavior by increased conjugation. Photoluminescence studies provided evidence of the effective separation of the photoinduced charge-carriers, reducing the rate of recombination and enhancing the photocatalytic potential of the CSHK‒Ni nanocomposite. The engineered catalyst displayed remarkable efficiency in the degradation of nitroimidazole containing antibiotics, Tinidazole (TNZ) and Metronidazole (MTZ), via H2O2 assisted AOP achieving a maximum photocatalytic efficiency of 95.87 ± 1.64% and 97.95 ± 1.33% in just 30 min under irradiation of visible light at optimum reaction conditions. The possible degradation pathway was elucidated based on the identification of ROS and degradation intermediates via HR‒LCMS and quenching experiments. Meanwhile, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were also examined, encompassing the discussing of various aspects including reaction conditions, influence of various oxidizing agents, competing species and dissolved organic substrates present in the wastewater, marking the novelty of the study. This research elucidated the role of the CSHK‒Ni nanocomposite as an interesting photocatalyst in the elimination of emerging nitroimidazole containing pharmaceutical pollutant under visible-light exposure, presenting an exciting novel avenue for a cleaner and greener environment in the days to come.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00375-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00375-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00375-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Anchoring Ni(II) bisacetylacetonate complex into CuS immobilized MOF for enhanced removal of tinidazole and metronidazole
Here in this study, a novel ternary CuS/HKUST‒1/Ni(acac)2 nano photocatalyst (CSHK‒Ni) was developed through a facile modification of HKUST‒1 MOF with Ni(acac)2 metal complex and by immobilizing CuS into the metal-organic framework (MOF). The incorporation of CuS, a narrow bandgap semiconductor, is anticipated to allow easy excitation by visible-light and improve the photocatalytic potential of the formulated catalyst which is validated by the decrease in the bandgap energy from 3.10 eV of pristine MOF to 2.19 eV. Moreover, the anchoring of the metal complex improves the light harvesting behavior by increased conjugation. Photoluminescence studies provided evidence of the effective separation of the photoinduced charge-carriers, reducing the rate of recombination and enhancing the photocatalytic potential of the CSHK‒Ni nanocomposite. The engineered catalyst displayed remarkable efficiency in the degradation of nitroimidazole containing antibiotics, Tinidazole (TNZ) and Metronidazole (MTZ), via H2O2 assisted AOP achieving a maximum photocatalytic efficiency of 95.87 ± 1.64% and 97.95 ± 1.33% in just 30 min under irradiation of visible light at optimum reaction conditions. The possible degradation pathway was elucidated based on the identification of ROS and degradation intermediates via HR‒LCMS and quenching experiments. Meanwhile, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were also examined, encompassing the discussing of various aspects including reaction conditions, influence of various oxidizing agents, competing species and dissolved organic substrates present in the wastewater, marking the novelty of the study. This research elucidated the role of the CSHK‒Ni nanocomposite as an interesting photocatalyst in the elimination of emerging nitroimidazole containing pharmaceutical pollutant under visible-light exposure, presenting an exciting novel avenue for a cleaner and greener environment in the days to come.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.