Fujian Lu, Carter Liou, Qing Ma, Zexuan Wu, Bingqing Xue, Yu Xia, Shutao Xia, Michael A. Trembley, Anna Ponek, Wenjun Xie, Kevin Shani, Raul H. Bortolin, Maksymilian Prondzynski, Paul Berkson, Xiaoran Zhang, Francisco J. Naya, Kenneth C. Bedi, Kenneth B. Margulies, Donghui Zhang, Kevin K. Parker, William T. Pu
{"title":"病毒递送的 CMYA5 可增强心脏二联体的组装","authors":"Fujian Lu, Carter Liou, Qing Ma, Zexuan Wu, Bingqing Xue, Yu Xia, Shutao Xia, Michael A. Trembley, Anna Ponek, Wenjun Xie, Kevin Shani, Raul H. Bortolin, Maksymilian Prondzynski, Paul Berkson, Xiaoran Zhang, Francisco J. Naya, Kenneth C. Bedi, Kenneth B. Margulies, Donghui Zhang, Kevin K. Parker, William T. Pu","doi":"10.1038/s41551-024-01253-z","DOIUrl":null,"url":null,"abstract":"<p>Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) lack nanoscale structures essential for efficient excitation–contraction coupling. Such nanostructures, known as dyads, are frequently disrupted in heart failure. Here we show that the reduced expression of cardiomyopathy-associated 5 (CMYA5), a master protein that establishes dyads, contributes to dyad disorganization in heart failure and to impaired dyad assembly in hiPSC-CMs, and that a miniaturized form of CMYA5 suitable for delivery via an adeno-associated virus substantially improved dyad architecture and normalized cardiac function under pressure overload. In hiPSC-CMs, the miniaturized form of CMYA5 increased contractile forces, improved Ca<sup>2+</sup> handling and enhanced the alignment of sarcomere Z-lines with ryanodine receptor 2, a protein that mediates the sarcoplasmic release of stored Ca<sup>2+</sup>. Our findings clarify the mechanisms responsible for impaired dyad structure in diseased cardiomyocytes, and suggest strategies for promoting dyad assembly and stability in heart disease and during the derivation of hiPSC-CMs.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":26.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virally delivered CMYA5 enhances the assembly of cardiac dyads\",\"authors\":\"Fujian Lu, Carter Liou, Qing Ma, Zexuan Wu, Bingqing Xue, Yu Xia, Shutao Xia, Michael A. Trembley, Anna Ponek, Wenjun Xie, Kevin Shani, Raul H. Bortolin, Maksymilian Prondzynski, Paul Berkson, Xiaoran Zhang, Francisco J. Naya, Kenneth C. Bedi, Kenneth B. Margulies, Donghui Zhang, Kevin K. Parker, William T. Pu\",\"doi\":\"10.1038/s41551-024-01253-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) lack nanoscale structures essential for efficient excitation–contraction coupling. Such nanostructures, known as dyads, are frequently disrupted in heart failure. Here we show that the reduced expression of cardiomyopathy-associated 5 (CMYA5), a master protein that establishes dyads, contributes to dyad disorganization in heart failure and to impaired dyad assembly in hiPSC-CMs, and that a miniaturized form of CMYA5 suitable for delivery via an adeno-associated virus substantially improved dyad architecture and normalized cardiac function under pressure overload. In hiPSC-CMs, the miniaturized form of CMYA5 increased contractile forces, improved Ca<sup>2+</sup> handling and enhanced the alignment of sarcomere Z-lines with ryanodine receptor 2, a protein that mediates the sarcoplasmic release of stored Ca<sup>2+</sup>. Our findings clarify the mechanisms responsible for impaired dyad structure in diseased cardiomyocytes, and suggest strategies for promoting dyad assembly and stability in heart disease and during the derivation of hiPSC-CMs.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01253-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01253-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Virally delivered CMYA5 enhances the assembly of cardiac dyads
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) lack nanoscale structures essential for efficient excitation–contraction coupling. Such nanostructures, known as dyads, are frequently disrupted in heart failure. Here we show that the reduced expression of cardiomyopathy-associated 5 (CMYA5), a master protein that establishes dyads, contributes to dyad disorganization in heart failure and to impaired dyad assembly in hiPSC-CMs, and that a miniaturized form of CMYA5 suitable for delivery via an adeno-associated virus substantially improved dyad architecture and normalized cardiac function under pressure overload. In hiPSC-CMs, the miniaturized form of CMYA5 increased contractile forces, improved Ca2+ handling and enhanced the alignment of sarcomere Z-lines with ryanodine receptor 2, a protein that mediates the sarcoplasmic release of stored Ca2+. Our findings clarify the mechanisms responsible for impaired dyad structure in diseased cardiomyocytes, and suggest strategies for promoting dyad assembly and stability in heart disease and during the derivation of hiPSC-CMs.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.