拓扑热传输

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Zhoufei Liu, Peng Jin, Min Lei, Chengmeng Wang, Fabio Marchesoni, Jian-Hua Jiang, Jiping Huang
{"title":"拓扑热传输","authors":"Zhoufei Liu, Peng Jin, Min Lei, Chengmeng Wang, Fabio Marchesoni, Jian-Hua Jiang, Jiping Huang","doi":"10.1038/s42254-024-00745-w","DOIUrl":null,"url":null,"abstract":"Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, has been intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub ‘topological thermotics’, which encompasses three primary branches: topological thermal conduction, convection and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine-learning techniques. This Perspective summarizes the recent progress of topological physics in thermal metamaterials and thus proposes a new research field, ‘topological thermotics’, which is inspired by topological photonics and topological acoustics in wave metamaterials.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":null,"pages":null},"PeriodicalIF":44.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological thermal transport\",\"authors\":\"Zhoufei Liu, Peng Jin, Min Lei, Chengmeng Wang, Fabio Marchesoni, Jian-Hua Jiang, Jiping Huang\",\"doi\":\"10.1038/s42254-024-00745-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, has been intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub ‘topological thermotics’, which encompasses three primary branches: topological thermal conduction, convection and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine-learning techniques. This Perspective summarizes the recent progress of topological physics in thermal metamaterials and thus proposes a new research field, ‘topological thermotics’, which is inspired by topological photonics and topological acoustics in wave metamaterials.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00745-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00745-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

热传输是能量传递过程的基本机制,与波的传播现象截然不同。通过新一代人工超材料:热超材料,对它的操纵远远超出了天然材料所能提供的可能性。拓扑物理学是当代凝聚态物理学的一个焦点,近年来已与热超材料交织在一起。受波超材料中拓扑光子学和拓扑声学的启发,最近出现了一个新的研究领域,我们称之为 "拓扑热学",它包括三个主要分支:拓扑热传导、对流和辐射。在拓扑热传导方面,我们讨论了一维和高维热拓扑相的最新进展。在拓扑热对流方面,我们讨论了具有独特性质和非赫米提热拓扑状态的热异常点的实现。最后,我们回顾了拓扑效应在近场和远场辐射中的最新展示。展望未来发展,我们最后讨论了拓扑热学的潜在发展方向,包括向粒子动力学和等离子体物理学等其他扩散过程的扩展,以及与机器学习技术的整合。本视角总结了热超材料中拓扑物理学的最新进展,并由此提出了一个新的研究领域--"拓扑热学",其灵感来自波超材料中的拓扑光子学和拓扑声学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topological thermal transport

Topological thermal transport

Topological thermal transport
Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, has been intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub ‘topological thermotics’, which encompasses three primary branches: topological thermal conduction, convection and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine-learning techniques. This Perspective summarizes the recent progress of topological physics in thermal metamaterials and thus proposes a new research field, ‘topological thermotics’, which is inspired by topological photonics and topological acoustics in wave metamaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信