Tongxin Zhang, Gaozhe Cai, Zhuo Zhang, Qian Li, Chuanjin Cui
{"title":"用于 PCR 的温度控制技术","authors":"Tongxin Zhang, Gaozhe Cai, Zhuo Zhang, Qian Li, Chuanjin Cui","doi":"10.1002/jnm.3280","DOIUrl":null,"url":null,"abstract":"<p>In order to solve the obvious nonlinear problem of temperature and complex structure of PCR instrument during nucleic acid amplification. In this paper, a new nucleic acid amplification device and temperature control algorithm were proposed. In the device, in order to improve the rise and fall rate and make the whole reaction device smaller and simpler, this paper uses a microfluidic chip for nucleic acid reaction. At the same time, in the warming and cooling module, the temperature is controlled by the semiconductor chilling plate, the air-cooled cooling device and the heat sink structure, which greatly improves the speed of nucleic acid amplification. In the algorithm, a hybrid algorithm is designed, using Particle Swarm Optimization (PSO) to optimize PID algorithm parameters, and then based on fuzzy theory, according to the temperature control requirements of nucleic acid amplification, fuzzy rules are analyzed and fuzzy reasoning is carried out, and then combined with PID to achieve rapid response and overshooting control of temperature control. Finally, the measurement noise is filtered by Kalman filter. Finally, COMSOL and MATLAB software are used to simulate and compare, and it is proved that the device has a certain heat dissipation effect in the process of nucleic acid amplification. This algorithm can improve the accuracy and robustness of the control system, improve the response speed, reduce the overshoot, shorten the adjustment time, and restrain the interference.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature control technology for PCR\",\"authors\":\"Tongxin Zhang, Gaozhe Cai, Zhuo Zhang, Qian Li, Chuanjin Cui\",\"doi\":\"10.1002/jnm.3280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to solve the obvious nonlinear problem of temperature and complex structure of PCR instrument during nucleic acid amplification. In this paper, a new nucleic acid amplification device and temperature control algorithm were proposed. In the device, in order to improve the rise and fall rate and make the whole reaction device smaller and simpler, this paper uses a microfluidic chip for nucleic acid reaction. At the same time, in the warming and cooling module, the temperature is controlled by the semiconductor chilling plate, the air-cooled cooling device and the heat sink structure, which greatly improves the speed of nucleic acid amplification. In the algorithm, a hybrid algorithm is designed, using Particle Swarm Optimization (PSO) to optimize PID algorithm parameters, and then based on fuzzy theory, according to the temperature control requirements of nucleic acid amplification, fuzzy rules are analyzed and fuzzy reasoning is carried out, and then combined with PID to achieve rapid response and overshooting control of temperature control. Finally, the measurement noise is filtered by Kalman filter. Finally, COMSOL and MATLAB software are used to simulate and compare, and it is proved that the device has a certain heat dissipation effect in the process of nucleic acid amplification. This algorithm can improve the accuracy and robustness of the control system, improve the response speed, reduce the overshoot, shorten the adjustment time, and restrain the interference.</p>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3280\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3280","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
In order to solve the obvious nonlinear problem of temperature and complex structure of PCR instrument during nucleic acid amplification. In this paper, a new nucleic acid amplification device and temperature control algorithm were proposed. In the device, in order to improve the rise and fall rate and make the whole reaction device smaller and simpler, this paper uses a microfluidic chip for nucleic acid reaction. At the same time, in the warming and cooling module, the temperature is controlled by the semiconductor chilling plate, the air-cooled cooling device and the heat sink structure, which greatly improves the speed of nucleic acid amplification. In the algorithm, a hybrid algorithm is designed, using Particle Swarm Optimization (PSO) to optimize PID algorithm parameters, and then based on fuzzy theory, according to the temperature control requirements of nucleic acid amplification, fuzzy rules are analyzed and fuzzy reasoning is carried out, and then combined with PID to achieve rapid response and overshooting control of temperature control. Finally, the measurement noise is filtered by Kalman filter. Finally, COMSOL and MATLAB software are used to simulate and compare, and it is proved that the device has a certain heat dissipation effect in the process of nucleic acid amplification. This algorithm can improve the accuracy and robustness of the control system, improve the response speed, reduce the overshoot, shorten the adjustment time, and restrain the interference.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.