基于电化学阻抗检测器的无人机水环境登革热 NS1 生物标记检测系统

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sung-Lin Tsai;Jiunn-Jye Wey;Szu-Chia Lai;You-Qian Lin;Chiao-Jou Chang;Pao-Cheng Huang
{"title":"基于电化学阻抗检测器的无人机水环境登革热 NS1 生物标记检测系统","authors":"Sung-Lin Tsai;Jiunn-Jye Wey;Szu-Chia Lai;You-Qian Lin;Chiao-Jou Chang;Pao-Cheng Huang","doi":"10.1109/LSENS.2024.3449342","DOIUrl":null,"url":null,"abstract":"Dengue viruses are currently one of the deadliest mosquito-borne infectious diseases; there is no effective treatment, and a vaccine for dengue fever is not yet available. Therefore, monitoring and preventing virus transmission is currently the most effective controlling method. This study focuses on environmental traces of dengue transmission, and a low-cost portable drone system for dengue virus inspection based on water sources is presented, which is equipped with a drone, a water collector, a microfluidic chip, and an electrochemical impedance converter using an Arduino development broad and an Analog Devices AD5934 chip. Water samples are carried back by a drone with a water collector, which can be measured and analyzed outdoors, that is not required to be brought back to the laboratory. The concentration of 10- and 20-μg/cc dengue nonstructural protein 1 can be identified by impedance magnitude in the microfluidic chip using the bead-based biomarker technology. The presented novel device using a drone-based collector with a low-cost electrochemical impedance sensor may have great potential for the creation of dengue maps, becoming a valuable technique that is beneficial to trace dengue transmission. In the future, it may quickly identify differences in impedance spectroscopy between numerous viruses for environmental investigation.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drone Inspection System Based on the Electrochemical Impedance Detector by Dengue NS1 Biomarkers in Water Environments\",\"authors\":\"Sung-Lin Tsai;Jiunn-Jye Wey;Szu-Chia Lai;You-Qian Lin;Chiao-Jou Chang;Pao-Cheng Huang\",\"doi\":\"10.1109/LSENS.2024.3449342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue viruses are currently one of the deadliest mosquito-borne infectious diseases; there is no effective treatment, and a vaccine for dengue fever is not yet available. Therefore, monitoring and preventing virus transmission is currently the most effective controlling method. This study focuses on environmental traces of dengue transmission, and a low-cost portable drone system for dengue virus inspection based on water sources is presented, which is equipped with a drone, a water collector, a microfluidic chip, and an electrochemical impedance converter using an Arduino development broad and an Analog Devices AD5934 chip. Water samples are carried back by a drone with a water collector, which can be measured and analyzed outdoors, that is not required to be brought back to the laboratory. The concentration of 10- and 20-μg/cc dengue nonstructural protein 1 can be identified by impedance magnitude in the microfluidic chip using the bead-based biomarker technology. The presented novel device using a drone-based collector with a low-cost electrochemical impedance sensor may have great potential for the creation of dengue maps, becoming a valuable technique that is beneficial to trace dengue transmission. In the future, it may quickly identify differences in impedance spectroscopy between numerous viruses for environmental investigation.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10646492/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10646492/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

登革热病毒是目前最致命的蚊媒传染病之一;目前还没有有效的治疗方法,也没有登革热疫苗。因此,监测和预防病毒传播是目前最有效的控制方法。本研究关注登革热传播的环境踪迹,介绍了一种基于水源的低成本便携式登革热病毒检测无人机系统,该系统配备了无人机、水收集器、微流控芯片和电化学阻抗转换器,使用 Arduino 开发平台和 Analog Devices AD5934 芯片。水样由无人机带着水收集器运回,可在室外进行测量和分析,无需带回实验室。利用基于珠子的生物标记技术,可以通过微流控芯片中的阻抗大小确定 10μg/cc 和 20μg/cc 登革热非结构蛋白 1 的浓度。所介绍的新型装置使用了基于无人机的采集器和低成本的电化学阻抗传感器,可能在绘制登革热地图方面具有巨大潜力,成为一项有益于追踪登革热传播的宝贵技术。未来,它还能快速识别多种病毒在阻抗光谱上的差异,用于环境调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drone Inspection System Based on the Electrochemical Impedance Detector by Dengue NS1 Biomarkers in Water Environments
Dengue viruses are currently one of the deadliest mosquito-borne infectious diseases; there is no effective treatment, and a vaccine for dengue fever is not yet available. Therefore, monitoring and preventing virus transmission is currently the most effective controlling method. This study focuses on environmental traces of dengue transmission, and a low-cost portable drone system for dengue virus inspection based on water sources is presented, which is equipped with a drone, a water collector, a microfluidic chip, and an electrochemical impedance converter using an Arduino development broad and an Analog Devices AD5934 chip. Water samples are carried back by a drone with a water collector, which can be measured and analyzed outdoors, that is not required to be brought back to the laboratory. The concentration of 10- and 20-μg/cc dengue nonstructural protein 1 can be identified by impedance magnitude in the microfluidic chip using the bead-based biomarker technology. The presented novel device using a drone-based collector with a low-cost electrochemical impedance sensor may have great potential for the creation of dengue maps, becoming a valuable technique that is beneficial to trace dengue transmission. In the future, it may quickly identify differences in impedance spectroscopy between numerous viruses for environmental investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信