Runxin Zhang;Menghan Li;Yuheng Zhang;Jian Xiong;Lu Lu
{"title":"LiRF:支持泛在射频信号的光基无线通信","authors":"Runxin Zhang;Menghan Li;Yuheng Zhang;Jian Xiong;Lu Lu","doi":"10.1109/JPHOT.2024.3449326","DOIUrl":null,"url":null,"abstract":"As the Internet of Things (IoT) becomes increasingly prevalent, there is a surge in wireless-connected devices. In this context, one technique that has garnered significant attention is visible light communication (VLC) due to its ultra-wide and license-free frequency resource. However, a critical issue in utilizing VLC in IoT lies in its lack of smooth cooperation with ubiquitous radio frequency (RF)-based wireless networks. RF signals can use duplex techniques to transmit and receive bidirectional signals with one antenna. In contrast, VLC's light-emitting diodes (LEDs) and PIN diodes cannot operate in duplex mode, posing challenges in establishing two unidirectional VLC links. To address the mismatch between VLC and RF, we propose a light-based RF transceiver design called LiRF, capable of smooth transmission of RF signals through VLC for IoT devices. To verify its feasibility, we first build a prototype using 802.11ax (WiFi-6) network interface cards (NICs) in the 5 GHz channel. Experimental results show that LiRF is compatible with the 802.11bb standard, supporting TCP/IP data streams at 750 Mbps with a 200 MHz Superluminescent Diode-PIN (SLD-PIN) transceiver and at 600 Mbps with a 180 MHz LED-PIN transceiver. To the best of our knowledge, this is the first real-time bidirectional VLC system utilizing WiFi NICs capable of achieving near-Gbps data rates for a single spatial stream without altering the RF designs. LiRF paves the way for seamlessly integrating VLC into upcoming IoT networks, supporting high-speed, low-latency applications like Virtual Reality and Augmented Reality.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-13"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646482","citationCount":"0","resultStr":"{\"title\":\"LiRF: Light-Based Wireless Communications Supporting Ubiquitous Radio Frequency Signals\",\"authors\":\"Runxin Zhang;Menghan Li;Yuheng Zhang;Jian Xiong;Lu Lu\",\"doi\":\"10.1109/JPHOT.2024.3449326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the Internet of Things (IoT) becomes increasingly prevalent, there is a surge in wireless-connected devices. In this context, one technique that has garnered significant attention is visible light communication (VLC) due to its ultra-wide and license-free frequency resource. However, a critical issue in utilizing VLC in IoT lies in its lack of smooth cooperation with ubiquitous radio frequency (RF)-based wireless networks. RF signals can use duplex techniques to transmit and receive bidirectional signals with one antenna. In contrast, VLC's light-emitting diodes (LEDs) and PIN diodes cannot operate in duplex mode, posing challenges in establishing two unidirectional VLC links. To address the mismatch between VLC and RF, we propose a light-based RF transceiver design called LiRF, capable of smooth transmission of RF signals through VLC for IoT devices. To verify its feasibility, we first build a prototype using 802.11ax (WiFi-6) network interface cards (NICs) in the 5 GHz channel. Experimental results show that LiRF is compatible with the 802.11bb standard, supporting TCP/IP data streams at 750 Mbps with a 200 MHz Superluminescent Diode-PIN (SLD-PIN) transceiver and at 600 Mbps with a 180 MHz LED-PIN transceiver. To the best of our knowledge, this is the first real-time bidirectional VLC system utilizing WiFi NICs capable of achieving near-Gbps data rates for a single spatial stream without altering the RF designs. LiRF paves the way for seamlessly integrating VLC into upcoming IoT networks, supporting high-speed, low-latency applications like Virtual Reality and Augmented Reality.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 5\",\"pages\":\"1-13\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646482\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10646482/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10646482/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
LiRF: Light-Based Wireless Communications Supporting Ubiquitous Radio Frequency Signals
As the Internet of Things (IoT) becomes increasingly prevalent, there is a surge in wireless-connected devices. In this context, one technique that has garnered significant attention is visible light communication (VLC) due to its ultra-wide and license-free frequency resource. However, a critical issue in utilizing VLC in IoT lies in its lack of smooth cooperation with ubiquitous radio frequency (RF)-based wireless networks. RF signals can use duplex techniques to transmit and receive bidirectional signals with one antenna. In contrast, VLC's light-emitting diodes (LEDs) and PIN diodes cannot operate in duplex mode, posing challenges in establishing two unidirectional VLC links. To address the mismatch between VLC and RF, we propose a light-based RF transceiver design called LiRF, capable of smooth transmission of RF signals through VLC for IoT devices. To verify its feasibility, we first build a prototype using 802.11ax (WiFi-6) network interface cards (NICs) in the 5 GHz channel. Experimental results show that LiRF is compatible with the 802.11bb standard, supporting TCP/IP data streams at 750 Mbps with a 200 MHz Superluminescent Diode-PIN (SLD-PIN) transceiver and at 600 Mbps with a 180 MHz LED-PIN transceiver. To the best of our knowledge, this is the first real-time bidirectional VLC system utilizing WiFi NICs capable of achieving near-Gbps data rates for a single spatial stream without altering the RF designs. LiRF paves the way for seamlessly integrating VLC into upcoming IoT networks, supporting high-speed, low-latency applications like Virtual Reality and Augmented Reality.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.