{"title":"投影空间中的周形式和完全相交","authors":"Michel Méo","doi":"10.1016/j.bulsci.2024.103505","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every Hodge cohomology class of bidegree <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> on a projective manifold <em>X</em> can be recovered from its image by the Chow transformation restricted to a suitable irreducible algebraic component of the space <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of effective algebraic cycles in <em>X</em> of dimension <span><math><mi>q</mi><mo>−</mo><mn>1</mn></math></span>. An application to the problem of the approximation by algebraic cycles is given. In the case of the cohomology class of an effective algebraic cycle, this injectivity at the cohomological level is a consequence of the inversion formula for the Chow transform of a conormal. When <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>, the inversion formula for the conormal is extended to the case of the conormal of any closed positive <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-current. An inversion formula for the Radon transform, defined on the Grassmannian, of smooth functions is involved and is also used to obtain a characterization of Chow forms of complete intersections in the projective space, expressed by means of the Capelli differential operators.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"197 ","pages":"Article 103505"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chow forms and complete intersections in the projective space\",\"authors\":\"Michel Méo\",\"doi\":\"10.1016/j.bulsci.2024.103505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every Hodge cohomology class of bidegree <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> on a projective manifold <em>X</em> can be recovered from its image by the Chow transformation restricted to a suitable irreducible algebraic component of the space <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of effective algebraic cycles in <em>X</em> of dimension <span><math><mi>q</mi><mo>−</mo><mn>1</mn></math></span>. An application to the problem of the approximation by algebraic cycles is given. In the case of the cohomology class of an effective algebraic cycle, this injectivity at the cohomological level is a consequence of the inversion formula for the Chow transform of a conormal. When <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>, the inversion formula for the conormal is extended to the case of the conormal of any closed positive <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-current. An inversion formula for the Radon transform, defined on the Grassmannian, of smooth functions is involved and is also used to obtain a characterization of Chow forms of complete intersections in the projective space, expressed by means of the Capelli differential operators.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"197 \",\"pages\":\"Article 103505\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001234\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001234","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了投影流形 X 上双度 (q,q) 的每一个霍奇同调类都可以通过周变换从它的映像中恢复出来,周变换被限制在维数为 q-1 的 X 中有效代数周期空间 Cq-1(X) 的一个合适的不可还原代数分量上。本文给出了代数周期近似问题的应用。就有效代数周期的同调类而言,同调层面的可注入性是同调的 Chow 变换的反演公式的结果。当 X=PN 时,常项的反转公式被扩展到任何封闭的正(q,q)流的常项。其中还涉及光滑函数在格拉斯曼上定义的拉顿变换的反演公式,并通过卡佩里微分算子获得了投影空间中完全相交的周形式的特征。
Chow forms and complete intersections in the projective space
We prove that every Hodge cohomology class of bidegree on a projective manifold X can be recovered from its image by the Chow transformation restricted to a suitable irreducible algebraic component of the space of effective algebraic cycles in X of dimension . An application to the problem of the approximation by algebraic cycles is given. In the case of the cohomology class of an effective algebraic cycle, this injectivity at the cohomological level is a consequence of the inversion formula for the Chow transform of a conormal. When , the inversion formula for the conormal is extended to the case of the conormal of any closed positive -current. An inversion formula for the Radon transform, defined on the Grassmannian, of smooth functions is involved and is also used to obtain a characterization of Chow forms of complete intersections in the projective space, expressed by means of the Capelli differential operators.