{"title":"具有非光滑解的弱奇异弗雷德霍姆-哈默斯坦积分方程的超融合方法及其应用","authors":"Arnab Kayal, Moumita Mandal","doi":"10.1016/j.apnum.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we propose shifted Jacobi spectral Galerkin method (SJSGM) and iterated SJSGM to solve nonlinear Fredholm integral equations of Hammerstein type with weakly singular kernel. We have rigorously studied convergence analysis of the proposed methods. Even though the exact solution exhibits non-smooth behaviour, we manage to achieve superconvergence order for the iterated SJSGM. Further, using smoothing transformation, we improve the regularity of the exact solution, which enhances the convergence order of the SJSGM and iterated SJSGM. We have also shown the applicability of our proposed methods to high-order nonlinear weakly singular integro-differential equations and achieved superconvergence. Several numerical examples have been implemented to demonstrate the theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergent method for weakly singular Fredholm-Hammerstein integral equations with non-smooth solutions and its application\",\"authors\":\"Arnab Kayal, Moumita Mandal\",\"doi\":\"10.1016/j.apnum.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we propose shifted Jacobi spectral Galerkin method (SJSGM) and iterated SJSGM to solve nonlinear Fredholm integral equations of Hammerstein type with weakly singular kernel. We have rigorously studied convergence analysis of the proposed methods. Even though the exact solution exhibits non-smooth behaviour, we manage to achieve superconvergence order for the iterated SJSGM. Further, using smoothing transformation, we improve the regularity of the exact solution, which enhances the convergence order of the SJSGM and iterated SJSGM. We have also shown the applicability of our proposed methods to high-order nonlinear weakly singular integro-differential equations and achieved superconvergence. Several numerical examples have been implemented to demonstrate the theoretical results.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Superconvergent method for weakly singular Fredholm-Hammerstein integral equations with non-smooth solutions and its application
In this article, we propose shifted Jacobi spectral Galerkin method (SJSGM) and iterated SJSGM to solve nonlinear Fredholm integral equations of Hammerstein type with weakly singular kernel. We have rigorously studied convergence analysis of the proposed methods. Even though the exact solution exhibits non-smooth behaviour, we manage to achieve superconvergence order for the iterated SJSGM. Further, using smoothing transformation, we improve the regularity of the exact solution, which enhances the convergence order of the SJSGM and iterated SJSGM. We have also shown the applicability of our proposed methods to high-order nonlinear weakly singular integro-differential equations and achieved superconvergence. Several numerical examples have been implemented to demonstrate the theoretical results.