关于有限群 m-semiregular 代表锦标赛的说明

IF 0.9 2区 数学 Q2 MATHEMATICS
Jia-Li Du
{"title":"关于有限群 m-semiregular 代表锦标赛的说明","authors":"Jia-Li Du","doi":"10.1016/j.jcta.2024.105952","DOIUrl":null,"url":null,"abstract":"<div><p>For a positive integer <em>m</em>, a group <em>G</em> is said to admit a <em>tournament m-semiregular representation</em> (T<em>m</em>SR for short) if there exists a tournament Γ such that the automorphism group of Γ is isomorphic to <em>G</em> and acts semiregularly on the vertex set of Γ with <em>m</em> orbits. It is easy to see that every finite group of even order does not admit a T<em>m</em>SR for any positive integer <em>m</em>. The T1SR is the well-known tournament regular representation (TRR for short). In 1970s, Babai and Imrich proved that every finite group of odd order admits a TRR except for <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, and every group (finite or infinite) without element of order 2 having an independent generating set admits a T2SR in (1979) <span><span>[3]</span></span>. Later, Godsil correct the result by showing that the only finite groups of odd order without a TRR are <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> by a probabilistic approach in (1986) <span><span>[11]</span></span>. In this note, it is shown that every finite group of odd order has a T<em>m</em>SR for every <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105952"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000918/pdfft?md5=9f9703a561ce567e377942546fcc91e2&pid=1-s2.0-S0097316524000918-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on tournament m-semiregular representations of finite groups\",\"authors\":\"Jia-Li Du\",\"doi\":\"10.1016/j.jcta.2024.105952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a positive integer <em>m</em>, a group <em>G</em> is said to admit a <em>tournament m-semiregular representation</em> (T<em>m</em>SR for short) if there exists a tournament Γ such that the automorphism group of Γ is isomorphic to <em>G</em> and acts semiregularly on the vertex set of Γ with <em>m</em> orbits. It is easy to see that every finite group of even order does not admit a T<em>m</em>SR for any positive integer <em>m</em>. The T1SR is the well-known tournament regular representation (TRR for short). In 1970s, Babai and Imrich proved that every finite group of odd order admits a TRR except for <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, and every group (finite or infinite) without element of order 2 having an independent generating set admits a T2SR in (1979) <span><span>[3]</span></span>. Later, Godsil correct the result by showing that the only finite groups of odd order without a TRR are <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> by a probabilistic approach in (1986) <span><span>[11]</span></span>. In this note, it is shown that every finite group of odd order has a T<em>m</em>SR for every <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"209 \",\"pages\":\"Article 105952\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000918/pdfft?md5=9f9703a561ce567e377942546fcc91e2&pid=1-s2.0-S0097316524000918-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000918\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000918","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数 m,如果存在一个锦标赛 Γ,使得 Γ 的自变群与 G 同构,并以 m 个轨道半规则地作用于 Γ 的顶点集,则称群 G 接受锦标赛 m 半规则表示(简称 TmSR)。不难看出,对于任意正整数 m,每个偶数阶有限群都不存在 TmSR。20 世纪 70 年代,Babai 和 Imrich 在(1979)[3] 中证明了除了 Z32 之外,每个奇阶有限群都有一个 TRR,而每个无 2 阶元素且有独立生成集的群(有限或无限)都有一个 T2SR。后来,Godsil 在 (1986) [11] 中用概率方法证明了唯一没有 TRR 的奇阶有限群是 Z32 和 Z33,从而纠正了这一结果。在本注中,我们证明了每一个奇阶有限群对于每一个 m≥2 都有一个 TmSR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on tournament m-semiregular representations of finite groups

For a positive integer m, a group G is said to admit a tournament m-semiregular representation (TmSR for short) if there exists a tournament Γ such that the automorphism group of Γ is isomorphic to G and acts semiregularly on the vertex set of Γ with m orbits. It is easy to see that every finite group of even order does not admit a TmSR for any positive integer m. The T1SR is the well-known tournament regular representation (TRR for short). In 1970s, Babai and Imrich proved that every finite group of odd order admits a TRR except for Z32, and every group (finite or infinite) without element of order 2 having an independent generating set admits a T2SR in (1979) [3]. Later, Godsil correct the result by showing that the only finite groups of odd order without a TRR are Z32 and Z33 by a probabilistic approach in (1986) [11]. In this note, it is shown that every finite group of odd order has a TmSR for every m2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信