通过标签语义引导的对比学习实现深度双不完全多视角多标签分类

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"通过标签语义引导的对比学习实现深度双不完全多视角多标签分类","authors":"","doi":"10.1016/j.neunet.2024.106674","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-view multi-label learning (MVML) aims to train a model that can explore the multi-view information of the input sample to obtain its accurate predictions of multiple labels. Unfortunately, a majority of existing MVML methods are based on the assumption of data completeness, making them useless in practical applications with partially missing views or some uncertain labels. Recently, many approaches have been proposed for incomplete data, but few of them can handle the case of both missing views and labels. Moreover, these few existing works commonly ignore potentially valuable information about unknown labels or do not sufficiently explore latent label information. Therefore, in this paper, we propose a label semantic-guided contrastive learning method named LSGC for the dual incomplete multi-view multi-label classification problem. Concretely, LSGC employs deep neural networks to extract high-level features of samples. Inspired by the observation of exploiting label correlations to improve the feature discriminability, we introduce a graph convolutional network to effectively capture label semantics. Furthermore, we introduce a new sample-label contrastive loss to explore the label semantic information and enhance the feature representation learning. For missing labels, we adopt a pseudo-label filling strategy and develop a weighting mechanism to explore the confidently recovered label information. We validate the framework on five standard datasets and the experimental results show that our method achieves superior performance in comparison with the state-of-the-art methods.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep dual incomplete multi-view multi-label classification via label semantic-guided contrastive learning\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-view multi-label learning (MVML) aims to train a model that can explore the multi-view information of the input sample to obtain its accurate predictions of multiple labels. Unfortunately, a majority of existing MVML methods are based on the assumption of data completeness, making them useless in practical applications with partially missing views or some uncertain labels. Recently, many approaches have been proposed for incomplete data, but few of them can handle the case of both missing views and labels. Moreover, these few existing works commonly ignore potentially valuable information about unknown labels or do not sufficiently explore latent label information. Therefore, in this paper, we propose a label semantic-guided contrastive learning method named LSGC for the dual incomplete multi-view multi-label classification problem. Concretely, LSGC employs deep neural networks to extract high-level features of samples. Inspired by the observation of exploiting label correlations to improve the feature discriminability, we introduce a graph convolutional network to effectively capture label semantics. Furthermore, we introduce a new sample-label contrastive loss to explore the label semantic information and enhance the feature representation learning. For missing labels, we adopt a pseudo-label filling strategy and develop a weighting mechanism to explore the confidently recovered label information. We validate the framework on five standard datasets and the experimental results show that our method achieves superior performance in comparison with the state-of-the-art methods.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024005987\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005987","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多视图多标签学习(Multi-view multi-label learning,MVML)旨在训练一个能够探索输入样本多视图信息的模型,以获得对多个标签的准确预测。遗憾的是,现有的 MVML 方法大多基于数据完整性的假设,这使得它们在有部分缺失视图或一些不确定标签的实际应用中毫无用处。最近,针对不完整数据提出了很多方法,但其中很少有方法能同时处理缺失视图和标签的情况。此外,这些为数不多的现有作品通常会忽略未知标签的潜在价值信息,或者没有充分挖掘潜在标签信息。因此,在本文中,我们针对双重不完整多视图多标签分类问题提出了一种名为 LSGC 的标签语义引导对比学习方法。具体来说,LSGC 利用深度神经网络提取样本的高级特征。受到利用标签相关性来提高特征可辨别性的观察结果的启发,我们引入了图卷积网络来有效捕捉标签语义。此外,我们还引入了一种新的样本-标签对比损失(sample-label contrastive loss),以探索标签语义信息并增强特征表征学习。对于缺失标签,我们采用了一种伪标签填充策略,并开发了一种加权机制来探索有把握恢复的标签信息。我们在五个标准数据集上对该框架进行了验证,实验结果表明,与最先进的方法相比,我们的方法取得了更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep dual incomplete multi-view multi-label classification via label semantic-guided contrastive learning

Multi-view multi-label learning (MVML) aims to train a model that can explore the multi-view information of the input sample to obtain its accurate predictions of multiple labels. Unfortunately, a majority of existing MVML methods are based on the assumption of data completeness, making them useless in practical applications with partially missing views or some uncertain labels. Recently, many approaches have been proposed for incomplete data, but few of them can handle the case of both missing views and labels. Moreover, these few existing works commonly ignore potentially valuable information about unknown labels or do not sufficiently explore latent label information. Therefore, in this paper, we propose a label semantic-guided contrastive learning method named LSGC for the dual incomplete multi-view multi-label classification problem. Concretely, LSGC employs deep neural networks to extract high-level features of samples. Inspired by the observation of exploiting label correlations to improve the feature discriminability, we introduce a graph convolutional network to effectively capture label semantics. Furthermore, we introduce a new sample-label contrastive loss to explore the label semantic information and enhance the feature representation learning. For missing labels, we adopt a pseudo-label filling strategy and develop a weighting mechanism to explore the confidently recovered label information. We validate the framework on five standard datasets and the experimental results show that our method achieves superior performance in comparison with the state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信