部分遮阳条件下基于沙猫群优化的光伏系统最大功率点跟踪技术

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"部分遮阳条件下基于沙猫群优化的光伏系统最大功率点跟踪技术","authors":"","doi":"10.1016/j.ijepes.2024.110203","DOIUrl":null,"url":null,"abstract":"<div><p>Maximum power point tracking (MPPT) plays a crucial role in photovoltaic systems (PVS). In partial shading conditions (PSCs), the P-V characteristic curves of PVS exhibit multiple peaks. Traditional MPPT algorithms, like perturbation and observation (P&amp;O), may fall into local maximum power points (LMPP) and fail to identify the global maximum power point (GMPP). To address the drawbacks of conventional optimal search algorithms, this paper introduces a bio-inspired approach named Sand Cat Swarm Optimization (SCSO) for maximizing the power output of individual PVS. The SCSO can mitigate the adverse effects of partial shadows on PVS performance by precisely identifying the GMPP. In comparison to other bio-inspired algorithms, SCSO exhibits lower complexity and higher efficiency by utilizing only one optimization parameter. SCSO’s performance is evaluated in four scenarios: uniform irradiance, complex partial shading conditions, step-varying stochastic irradiance, and gradual irradiance. A comparative analysis is conducted with Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA), Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Moth-Flame Optimization (MFO), Crow Search Algorithm (CSA), Slap-Swarm Optimization (SSA) and P&amp;O, focusing on factors such as high efficiency, accuracy, convergence time, and implementation simplicity. Simulation results demonstrate that, on average, the tracking time improves by 19.91%, achieving an efficiency of over 98% while maximizing energy yield. Simultaneously, experimental results indicate that the SCSO is capable of tracking to a larger power output in a shorter time, with an average tracking efficiency improvement of 3.16%.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524004241/pdfft?md5=9ec01bfb0eead5132542c3a691c8a706&pid=1-s2.0-S0142061524004241-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sand cat swarm optimization based maximum power point tracking technique for photovoltaic system under partial shading conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maximum power point tracking (MPPT) plays a crucial role in photovoltaic systems (PVS). In partial shading conditions (PSCs), the P-V characteristic curves of PVS exhibit multiple peaks. Traditional MPPT algorithms, like perturbation and observation (P&amp;O), may fall into local maximum power points (LMPP) and fail to identify the global maximum power point (GMPP). To address the drawbacks of conventional optimal search algorithms, this paper introduces a bio-inspired approach named Sand Cat Swarm Optimization (SCSO) for maximizing the power output of individual PVS. The SCSO can mitigate the adverse effects of partial shadows on PVS performance by precisely identifying the GMPP. In comparison to other bio-inspired algorithms, SCSO exhibits lower complexity and higher efficiency by utilizing only one optimization parameter. SCSO’s performance is evaluated in four scenarios: uniform irradiance, complex partial shading conditions, step-varying stochastic irradiance, and gradual irradiance. A comparative analysis is conducted with Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA), Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Moth-Flame Optimization (MFO), Crow Search Algorithm (CSA), Slap-Swarm Optimization (SSA) and P&amp;O, focusing on factors such as high efficiency, accuracy, convergence time, and implementation simplicity. Simulation results demonstrate that, on average, the tracking time improves by 19.91%, achieving an efficiency of over 98% while maximizing energy yield. Simultaneously, experimental results indicate that the SCSO is capable of tracking to a larger power output in a shorter time, with an average tracking efficiency improvement of 3.16%.</p></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004241/pdfft?md5=9ec01bfb0eead5132542c3a691c8a706&pid=1-s2.0-S0142061524004241-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004241\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524004241","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最大功率点跟踪(MPPT)在光伏系统(PVS)中发挥着至关重要的作用。在部分遮光条件(PSCs)下,光伏系统的 P-V 特性曲线会出现多个峰值。传统的 MPPT 算法,如扰动和观测 (P&O),可能会陷入局部最大功率点 (LMPP) 而无法识别全局最大功率点 (GMPP)。为解决传统最优搜索算法的弊端,本文引入了一种名为 "沙猫群优化"(SCSO)的生物启发方法,用于最大化单个光伏系统的功率输出。SCSO 可通过精确识别 GMPP 来减轻部分阴影对 PVS 性能的不利影响。与其他生物启发算法相比,SCSO 仅使用一个优化参数,因此复杂度更低,效率更高。SCSO 的性能在四种情况下进行了评估:均匀辐照度、复杂的部分遮阳条件、阶跃变化的随机辐照度和渐变辐照度。针对高效率、精确度、收敛时间和实施简便性等因素,与粒子群优化算法(PSO)、布谷鸟搜索算法(CSA)、灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、飞蛾-火焰优化算法(MFO)、乌鸦搜索算法(CSA)、蜻蜓-蜂群优化算法(SSA)和 P&O 进行了比较分析。仿真结果表明,跟踪时间平均缩短了 19.91%,效率达到 98% 以上,同时实现了能源产出最大化。同时,实验结果表明,SCSO 能够在更短的时间内跟踪到更大的功率输出,平均跟踪效率提高了 3.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sand cat swarm optimization based maximum power point tracking technique for photovoltaic system under partial shading conditions

Sand cat swarm optimization based maximum power point tracking technique for photovoltaic system under partial shading conditions

Maximum power point tracking (MPPT) plays a crucial role in photovoltaic systems (PVS). In partial shading conditions (PSCs), the P-V characteristic curves of PVS exhibit multiple peaks. Traditional MPPT algorithms, like perturbation and observation (P&O), may fall into local maximum power points (LMPP) and fail to identify the global maximum power point (GMPP). To address the drawbacks of conventional optimal search algorithms, this paper introduces a bio-inspired approach named Sand Cat Swarm Optimization (SCSO) for maximizing the power output of individual PVS. The SCSO can mitigate the adverse effects of partial shadows on PVS performance by precisely identifying the GMPP. In comparison to other bio-inspired algorithms, SCSO exhibits lower complexity and higher efficiency by utilizing only one optimization parameter. SCSO’s performance is evaluated in four scenarios: uniform irradiance, complex partial shading conditions, step-varying stochastic irradiance, and gradual irradiance. A comparative analysis is conducted with Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA), Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Moth-Flame Optimization (MFO), Crow Search Algorithm (CSA), Slap-Swarm Optimization (SSA) and P&O, focusing on factors such as high efficiency, accuracy, convergence time, and implementation simplicity. Simulation results demonstrate that, on average, the tracking time improves by 19.91%, achieving an efficiency of over 98% while maximizing energy yield. Simultaneously, experimental results indicate that the SCSO is capable of tracking to a larger power output in a shorter time, with an average tracking efficiency improvement of 3.16%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信