全固态锂电池 Li2S-V2S3-LiI 正极的结构可逆性和充放电循环

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Masato Osaki , Hirofumi Tsukasaki , Hiroshi Nakajima , Tatsuki Shigedomi , Atsushi Sakuda , Akitoshi Hayashi , Shigeo Mori
{"title":"全固态锂电池 Li2S-V2S3-LiI 正极的结构可逆性和充放电循环","authors":"Masato Osaki ,&nbsp;Hirofumi Tsukasaki ,&nbsp;Hiroshi Nakajima ,&nbsp;Tatsuki Shigedomi ,&nbsp;Atsushi Sakuda ,&nbsp;Akitoshi Hayashi ,&nbsp;Shigeo Mori","doi":"10.1016/j.ssi.2024.116683","DOIUrl":null,"url":null,"abstract":"<div><p>All-solid-state batteries with sulfur-based positive electrode active materials have been attracting much attention regarding their safety and long cycle life. The Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI system with high ionic and electronic conductivity is a promising positive electrode material for sulfide-based all-solid-state batteries. Such cells using Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI in the positive electrode layer operate without conductive carbons and solid electrolytes. In particular, cells using 90(0.75Li<sub>2</sub>S·0.25V<sub>2</sub>S<sub>3</sub>)·10LiI (mol %) exhibit a high capacity and cycle durability even after 100 cycles. To clarify the charge-discharge mechanism of Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI, we investigated microstructural changes during charge-discharge cycles via transmission electron microscopy (TEM). The microstructure of 90(0.75Li<sub>2</sub>S·0.25V<sub>2</sub>S<sub>3</sub>)·10LiI before charge-discharge measurement was characterized by LiVS<sub>2</sub> and Li<sub>2</sub>S−LiI nanocrystallites in an amorphous matrix. In the Li<sub>2</sub>S−LiI domain, the Li<sub>2</sub>S−LiI nanocrystallites with an antifluorite-type crystal structure amorphized after charging and reprecipitate as Li<sub>2</sub>S−LiI nanocrystallites after discharging. As for LiVS<sub>2</sub>, Li deintercalation and intercalation occurred during the charge-discharge processes. Ex-situ TEM observations demonstrated that the structural reversibility of LiVS<sub>2</sub> and Li<sub>2</sub>S−LiI in an amorphous matrix contributes to high cycle performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116683"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural reversibility and charge-discharge cycle of Li2S-V2S3-LiI positive electrodes for all-solid-state lithium batteries\",\"authors\":\"Masato Osaki ,&nbsp;Hirofumi Tsukasaki ,&nbsp;Hiroshi Nakajima ,&nbsp;Tatsuki Shigedomi ,&nbsp;Atsushi Sakuda ,&nbsp;Akitoshi Hayashi ,&nbsp;Shigeo Mori\",\"doi\":\"10.1016/j.ssi.2024.116683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>All-solid-state batteries with sulfur-based positive electrode active materials have been attracting much attention regarding their safety and long cycle life. The Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI system with high ionic and electronic conductivity is a promising positive electrode material for sulfide-based all-solid-state batteries. Such cells using Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI in the positive electrode layer operate without conductive carbons and solid electrolytes. In particular, cells using 90(0.75Li<sub>2</sub>S·0.25V<sub>2</sub>S<sub>3</sub>)·10LiI (mol %) exhibit a high capacity and cycle durability even after 100 cycles. To clarify the charge-discharge mechanism of Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI, we investigated microstructural changes during charge-discharge cycles via transmission electron microscopy (TEM). The microstructure of 90(0.75Li<sub>2</sub>S·0.25V<sub>2</sub>S<sub>3</sub>)·10LiI before charge-discharge measurement was characterized by LiVS<sub>2</sub> and Li<sub>2</sub>S−LiI nanocrystallites in an amorphous matrix. In the Li<sub>2</sub>S−LiI domain, the Li<sub>2</sub>S−LiI nanocrystallites with an antifluorite-type crystal structure amorphized after charging and reprecipitate as Li<sub>2</sub>S−LiI nanocrystallites after discharging. As for LiVS<sub>2</sub>, Li deintercalation and intercalation occurred during the charge-discharge processes. Ex-situ TEM observations demonstrated that the structural reversibility of LiVS<sub>2</sub> and Li<sub>2</sub>S−LiI in an amorphous matrix contributes to high cycle performance.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"416 \",\"pages\":\"Article 116683\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002315\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002315","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用硫基正极活性材料的全固态电池因其安全性和长循环寿命而备受关注。具有高离子导电性和电子导电性的 Li2S-V2S3-LiI 系统是硫基全固态电池的一种前景看好的正极材料。这种正电极层使用 Li2S-V2S3-LiI 的电池无需导电碳和固体电解质即可运行。特别是使用 90(0.75Li2S-0.25V2S3)-10LiI(摩尔%)的电池,即使在 100 次循环后也能表现出较高的容量和循环耐久性。为了弄清 Li2S-V2S3-LiI 的充放电机制,我们通过透射电子显微镜(TEM)研究了充放电循环过程中的微观结构变化。充放电测量前,90(0.75Li2S-0.25V2S3)-10LiI 的微观结构特征为无定形基体中的 LiVS2 和 Li2S-LiI 纳米晶。在 Li2S-LiI 域中,具有反萤石型晶体结构的 Li2S-LiI 纳米晶在充电后发生非晶化,并在放电后重新沉淀为 Li2S-LiI 纳米晶。至于 LiVS2,在充放电过程中发生了锂的脱插和插层。原位 TEM 观察结果表明,LiVS2 和 Li2S-LiI 在非晶基质中的结构可逆性有助于实现高循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural reversibility and charge-discharge cycle of Li2S-V2S3-LiI positive electrodes for all-solid-state lithium batteries

All-solid-state batteries with sulfur-based positive electrode active materials have been attracting much attention regarding their safety and long cycle life. The Li2S−V2S3−LiI system with high ionic and electronic conductivity is a promising positive electrode material for sulfide-based all-solid-state batteries. Such cells using Li2S−V2S3−LiI in the positive electrode layer operate without conductive carbons and solid electrolytes. In particular, cells using 90(0.75Li2S·0.25V2S3)·10LiI (mol %) exhibit a high capacity and cycle durability even after 100 cycles. To clarify the charge-discharge mechanism of Li2S−V2S3−LiI, we investigated microstructural changes during charge-discharge cycles via transmission electron microscopy (TEM). The microstructure of 90(0.75Li2S·0.25V2S3)·10LiI before charge-discharge measurement was characterized by LiVS2 and Li2S−LiI nanocrystallites in an amorphous matrix. In the Li2S−LiI domain, the Li2S−LiI nanocrystallites with an antifluorite-type crystal structure amorphized after charging and reprecipitate as Li2S−LiI nanocrystallites after discharging. As for LiVS2, Li deintercalation and intercalation occurred during the charge-discharge processes. Ex-situ TEM observations demonstrated that the structural reversibility of LiVS2 and Li2S−LiI in an amorphous matrix contributes to high cycle performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信