用于交互感知车辆轨迹预测的异构图社会池

IF 8.3 1区 工程技术 Q1 ECONOMICS
Xiaoyu Mo , Yang Xing , Chen Lv
{"title":"用于交互感知车辆轨迹预测的异构图社会池","authors":"Xiaoyu Mo ,&nbsp;Yang Xing ,&nbsp;Chen Lv","doi":"10.1016/j.tre.2024.103748","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.</p></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction\",\"authors\":\"Xiaoyu Mo ,&nbsp;Yang Xing ,&nbsp;Chen Lv\",\"doi\":\"10.1016/j.tre.2024.103748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.</p></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554524003399\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524003399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

预测邻近车辆的行驶轨迹对于自动驾驶汽车在错综复杂的真实世界中行驶至关重要。挑战在于如何考虑车辆运动、出行需求、相邻车辆和本地地图的各种影响因素。为了全面解决这些因素,我们开发了一个采用异构图社会(HGS)汇集方法的框架。该框架在单个图中表示车辆和基础设施,其中车辆节点包含历史动态信息,基础设施节点包含来自地图图像的空间特征。HGS 可捕捉城市驾驶中车辆与基础设施之间的互动。与局限于固定车辆数和公路设置的现有方法不同,HGS 可以适应可变的交互和道路布局。通过合并所有特征,我们的方法可以预测目标车辆的未来路径。在真实世界数据上的实验证实了 HGS 的优越性,它拥有更快的训练和推理速度,肯定了它的可行性、有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction

Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信