Ludisbel León-Marcos, Antonio Montes, Diego Valor, Ignacio García-Casas, Noelia D. Machado, Clara Pereyra
{"title":"利用加压浸泡法浸渍食品包装用生物可降解聚合物","authors":"Ludisbel León-Marcos, Antonio Montes, Diego Valor, Ignacio García-Casas, Noelia D. Machado, Clara Pereyra","doi":"10.1016/j.jcou.2024.102915","DOIUrl":null,"url":null,"abstract":"<div><p>The Pressurized Soaking Impregnation Method combines the main advantages of supercritical solvent impregnation and the soaking casting technique. This work studied the impregnation of poly(3-hydroxy-butyrate-co3-hydroxy-valerate) (PHB-HV) sheets with mango leaf extracts using this method for its future use as active packaging. The influence of temperature (35–55 ºC), pressure (10, 20–30 MPa), and depressurization rate (0.1–5 MPa/min) on the impregnation loads, antioxidant capacities, and mechanical properties of the impregnated samples were evaluated. In addition, the morphological characteristics, colour characterization, and release of active compounds in a food simulant of the PHB-HV samples impregnated at 30 MPa were analysed. The results showed higher impregnation loads (7.66 % wt.) at 30 MPa, 55 ºC, and a slow depressurization rate (0.1 MPa/min). However, the impregnation of antioxidant compounds did not show the expected behaviour, reaching values lower than 3 %. In addition, the samples that were impregnated at 30 MPa showed colour differences that were perceptible to the human eye. A non-homogeneous distribution of impregnation, cracks, and pores on the surface were also observed. The release study in the D1 food simulant showed good agreement with the Peleg model and a quasi-Fickian diffusion behaviour according to the Korsmeyer-Peppas model. The contact time study in the impregnation at 30 MPa, 35 ºC and 0.1 MPa/min revealed a slight increase in antioxidant capacity after six hours. Furthermore, samples with a more homogeneous colour distribution were obtained.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"87 ","pages":"Article 102915"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002506/pdfft?md5=edac6e0896f10f6e633f6d1e999ef1c2&pid=1-s2.0-S2212982024002506-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impregnation of biodegradable polymer using a pressurized soaking method for food packaging\",\"authors\":\"Ludisbel León-Marcos, Antonio Montes, Diego Valor, Ignacio García-Casas, Noelia D. Machado, Clara Pereyra\",\"doi\":\"10.1016/j.jcou.2024.102915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Pressurized Soaking Impregnation Method combines the main advantages of supercritical solvent impregnation and the soaking casting technique. This work studied the impregnation of poly(3-hydroxy-butyrate-co3-hydroxy-valerate) (PHB-HV) sheets with mango leaf extracts using this method for its future use as active packaging. The influence of temperature (35–55 ºC), pressure (10, 20–30 MPa), and depressurization rate (0.1–5 MPa/min) on the impregnation loads, antioxidant capacities, and mechanical properties of the impregnated samples were evaluated. In addition, the morphological characteristics, colour characterization, and release of active compounds in a food simulant of the PHB-HV samples impregnated at 30 MPa were analysed. The results showed higher impregnation loads (7.66 % wt.) at 30 MPa, 55 ºC, and a slow depressurization rate (0.1 MPa/min). However, the impregnation of antioxidant compounds did not show the expected behaviour, reaching values lower than 3 %. In addition, the samples that were impregnated at 30 MPa showed colour differences that were perceptible to the human eye. A non-homogeneous distribution of impregnation, cracks, and pores on the surface were also observed. The release study in the D1 food simulant showed good agreement with the Peleg model and a quasi-Fickian diffusion behaviour according to the Korsmeyer-Peppas model. The contact time study in the impregnation at 30 MPa, 35 ºC and 0.1 MPa/min revealed a slight increase in antioxidant capacity after six hours. Furthermore, samples with a more homogeneous colour distribution were obtained.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"87 \",\"pages\":\"Article 102915\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002506/pdfft?md5=edac6e0896f10f6e633f6d1e999ef1c2&pid=1-s2.0-S2212982024002506-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002506\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002506","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impregnation of biodegradable polymer using a pressurized soaking method for food packaging
The Pressurized Soaking Impregnation Method combines the main advantages of supercritical solvent impregnation and the soaking casting technique. This work studied the impregnation of poly(3-hydroxy-butyrate-co3-hydroxy-valerate) (PHB-HV) sheets with mango leaf extracts using this method for its future use as active packaging. The influence of temperature (35–55 ºC), pressure (10, 20–30 MPa), and depressurization rate (0.1–5 MPa/min) on the impregnation loads, antioxidant capacities, and mechanical properties of the impregnated samples were evaluated. In addition, the morphological characteristics, colour characterization, and release of active compounds in a food simulant of the PHB-HV samples impregnated at 30 MPa were analysed. The results showed higher impregnation loads (7.66 % wt.) at 30 MPa, 55 ºC, and a slow depressurization rate (0.1 MPa/min). However, the impregnation of antioxidant compounds did not show the expected behaviour, reaching values lower than 3 %. In addition, the samples that were impregnated at 30 MPa showed colour differences that were perceptible to the human eye. A non-homogeneous distribution of impregnation, cracks, and pores on the surface were also observed. The release study in the D1 food simulant showed good agreement with the Peleg model and a quasi-Fickian diffusion behaviour according to the Korsmeyer-Peppas model. The contact time study in the impregnation at 30 MPa, 35 ºC and 0.1 MPa/min revealed a slight increase in antioxidant capacity after six hours. Furthermore, samples with a more homogeneous colour distribution were obtained.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.