由换元器生成的环和 C*-数组

IF 0.8 2区 数学 Q2 MATHEMATICS
Eusebio Gardella, Hannes Thiel
{"title":"由换元器生成的环和 C*-数组","authors":"Eusebio Gardella,&nbsp;Hannes Thiel","doi":"10.1016/j.jalgebra.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a unital ring is generated by its commutators as an ideal if and only if there exists a natural number <em>N</em> such that every element is a sum of <em>N</em> products of pairs of commutators. We show that one can take <span><math><mi>N</mi><mo>≤</mo><mn>2</mn></math></span> for matrix rings, and that one may choose <span><math><mi>N</mi><mo>≤</mo><mn>3</mn></math></span> for rings that contain a direct sum of matrix rings – this in particular applies to C*-algebras that are properly infinite or have real rank zero. For Jiang-Su-stable C*-algebras, we show that <span><math><mi>N</mi><mo>≤</mo><mn>6</mn></math></span> can be arranged.</p><p>For arbitrary rings, we show that every element in the commutator ideal admits a power that is a sum of products of commutators. Using that a C*-algebra cannot be a radical extension over a proper ideal, we deduce that a C*-algebra is generated by its commutators as a not necessarily closed ideal if and only if every element is a finite sum of products of pairs of commutators.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004794/pdfft?md5=5885df0350057384ae38fd28e9da2b73&pid=1-s2.0-S0021869324004794-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rings and C*-algebras generated by commutators\",\"authors\":\"Eusebio Gardella,&nbsp;Hannes Thiel\",\"doi\":\"10.1016/j.jalgebra.2024.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that a unital ring is generated by its commutators as an ideal if and only if there exists a natural number <em>N</em> such that every element is a sum of <em>N</em> products of pairs of commutators. We show that one can take <span><math><mi>N</mi><mo>≤</mo><mn>2</mn></math></span> for matrix rings, and that one may choose <span><math><mi>N</mi><mo>≤</mo><mn>3</mn></math></span> for rings that contain a direct sum of matrix rings – this in particular applies to C*-algebras that are properly infinite or have real rank zero. For Jiang-Su-stable C*-algebras, we show that <span><math><mi>N</mi><mo>≤</mo><mn>6</mn></math></span> can be arranged.</p><p>For arbitrary rings, we show that every element in the commutator ideal admits a power that is a sum of products of commutators. Using that a C*-algebra cannot be a radical extension over a proper ideal, we deduce that a C*-algebra is generated by its commutators as a not necessarily closed ideal if and only if every element is a finite sum of products of pairs of commutators.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004794/pdfft?md5=5885df0350057384ae38fd28e9da2b73&pid=1-s2.0-S0021869324004794-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004794\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004794","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,当且仅当存在一个自然数 N,使得每个元素都是 N 个换元对的乘积之和时,一个单素环由其换元生成理想。我们证明,对于矩阵环,我们可以取 N≤2,而对于包含矩阵环直接和的环,我们可以选择 N≤3--这尤其适用于适当无限或实阶为零的 C* 结构。对于江-苏稳定的 C* 代数,我们证明可以安排 N≤6。对于任意环,我们证明换元理想中的每个元素都有一个幂,这个幂是换元的乘积之和。利用 C* 代数不可能是在一个适当理想上的基扩展,我们推导出,当且仅当每个元素都是换元对的乘积的有限和时,C*代数由其换元生成一个不一定封闭的理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rings and C*-algebras generated by commutators

We show that a unital ring is generated by its commutators as an ideal if and only if there exists a natural number N such that every element is a sum of N products of pairs of commutators. We show that one can take N2 for matrix rings, and that one may choose N3 for rings that contain a direct sum of matrix rings – this in particular applies to C*-algebras that are properly infinite or have real rank zero. For Jiang-Su-stable C*-algebras, we show that N6 can be arranged.

For arbitrary rings, we show that every element in the commutator ideal admits a power that is a sum of products of commutators. Using that a C*-algebra cannot be a radical extension over a proper ideal, we deduce that a C*-algebra is generated by its commutators as a not necessarily closed ideal if and only if every element is a finite sum of products of pairs of commutators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信