论Fpm[u]〈u3〉上长度为ps的循环码的对偶性

IF 1.2 3区 数学 Q1 MATHEMATICS
Ahmad Erfanian , Roghaye Mohammadi Hesari
{"title":"论Fpm[u]〈u3〉上长度为ps的循环码的对偶性","authors":"Ahmad Erfanian ,&nbsp;Roghaye Mohammadi Hesari","doi":"10.1016/j.ffa.2024.102500","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we determine the dual codes of cyclic codes of length <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mo>〈</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>〉</mo></mrow></mfrac></math></span>, where <em>p</em> is a prime number and <span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>. Also, we improve and give correction of the results stated by B. Kim and J. Lee (2020) in <span><span>[11]</span></span>. Finally, we provide some examples of optimal and near-MDS cyclic codes of length <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and compute dual of them.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the duality of cyclic codes of length ps over Fpm[u]〈u3〉\",\"authors\":\"Ahmad Erfanian ,&nbsp;Roghaye Mohammadi Hesari\",\"doi\":\"10.1016/j.ffa.2024.102500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we determine the dual codes of cyclic codes of length <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mo>〈</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>〉</mo></mrow></mfrac></math></span>, where <em>p</em> is a prime number and <span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>. Also, we improve and give correction of the results stated by B. Kim and J. Lee (2020) in <span><span>[11]</span></span>. Finally, we provide some examples of optimal and near-MDS cyclic codes of length <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and compute dual of them.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001394\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001394","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们确定了 R3 上长度为 ps 的循环码的对偶码=Fpm[u]〈u3〉,其中 p 是素数且 u3=0。同时,我们改进并修正了 B. Kim 和 J. Lee (2020) 在 [11] 中所述的结果。最后,我们举例说明了 R3 上长度为 ps 的最优和近 MDS 循环码,并计算了它们的对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the duality of cyclic codes of length ps over Fpm[u]〈u3〉

In this paper, we determine the dual codes of cyclic codes of length ps over R3=Fpm[u]u3, where p is a prime number and u3=0. Also, we improve and give correction of the results stated by B. Kim and J. Lee (2020) in [11]. Finally, we provide some examples of optimal and near-MDS cyclic codes of length ps over R3 and compute dual of them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信