关于强积图的簇嵌入的说明

IF 0.7 3区 数学 Q2 MATHEMATICS
Chuanshu Wu, Zijian Deng
{"title":"关于强积图的簇嵌入的说明","authors":"Chuanshu Wu,&nbsp;Zijian Deng","doi":"10.1016/j.disc.2024.114237","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> be graphs, and <span><math><mi>G</mi><mo>⁎</mo><mi>H</mi></math></span> represent a specific graph product of <em>G</em> and <em>H</em>. Define <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as the largest <em>t</em> for which <em>G</em> contains a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-immersion. Collins, Heenehan, and McDonald posed the question: given <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi></math></span>, how large can <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo></math></span> be? They conjectured <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mi>r</mi></math></span> when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when <em>H</em> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114237"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003686/pdfft?md5=2175b8b68439085105021d9c5e79d193&pid=1-s2.0-S0012365X24003686-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on clique immersion of strong product graphs\",\"authors\":\"Chuanshu Wu,&nbsp;Zijian Deng\",\"doi\":\"10.1016/j.disc.2024.114237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> be graphs, and <span><math><mi>G</mi><mo>⁎</mo><mi>H</mi></math></span> represent a specific graph product of <em>G</em> and <em>H</em>. Define <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as the largest <em>t</em> for which <em>G</em> contains a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-immersion. Collins, Heenehan, and McDonald posed the question: given <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi></math></span>, how large can <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo></math></span> be? They conjectured <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mi>r</mi></math></span> when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when <em>H</em> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114237\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003686/pdfft?md5=2175b8b68439085105021d9c5e79d193&pid=1-s2.0-S0012365X24003686-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003686\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003686","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G、H 为图,G⁎H 表示 G 和 H 的特定图积。定义 im(G) 为 G 包含 Kt-imersion 的最大 t。柯林斯、希尼汉和麦克唐纳提出了这样一个问题:给定 im(G)=t 和 im(H)=r,im(G⁎H)可以有多大?他们猜想,当⁎表示强积时,im(G⁎H)≥tr。在本注释中,我们肯定了这一猜想在具有特定浸入的图中成立,尤其是当 H 包含 Kr 作为子图时。因此,我们还为 Guyer 和 McDonald 的一个结果提供了另一种论证,证明恒多重性多图的线图满足 Abu-Khzam 和 Langston 最初提出的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on clique immersion of strong product graphs

Let G,H be graphs, and GH represent a specific graph product of G and H. Define im(G) as the largest t for which G contains a Kt-immersion. Collins, Heenehan, and McDonald posed the question: given im(G)=t and im(H)=r, how large can im(GH) be? They conjectured im(GH)tr when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when H contains Kr as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信