一类奇异分数微分方程的多项式配位法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Ghulam Abbas Khan , Kaido Lätt , Magda Rebelo
{"title":"一类奇异分数微分方程的多项式配位法","authors":"Ghulam Abbas Khan ,&nbsp;Kaido Lätt ,&nbsp;Magda Rebelo","doi":"10.1016/j.apnum.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we consider a class of singular fractional differential equations (SFDEs). Using a suitable variable transformation we rewrite the SFDE as a cordial Volterra integral equation and propose a polynomial collocation method to find an approximate solution of the original problem. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"207 ","pages":"Pages 45-57"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polynomial collocation method for a class of singular fractional differential equations\",\"authors\":\"Ghulam Abbas Khan ,&nbsp;Kaido Lätt ,&nbsp;Magda Rebelo\",\"doi\":\"10.1016/j.apnum.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we consider a class of singular fractional differential equations (SFDEs). Using a suitable variable transformation we rewrite the SFDE as a cordial Volterra integral equation and propose a polynomial collocation method to find an approximate solution of the original problem. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"207 \",\"pages\":\"Pages 45-57\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002216\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002216","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了一类奇异分数微分方程(SFDE)。通过适当的变量变换,我们将 SFDE 重写为一个心形 Volterra 积分方程,并提出了一种多项式配位法来寻找原始问题的近似解。我们提供了数值方法的误差分析,并通过一些数值示例说明了该方法的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial collocation method for a class of singular fractional differential equations

In this work we consider a class of singular fractional differential equations (SFDEs). Using a suitable variable transformation we rewrite the SFDE as a cordial Volterra integral equation and propose a polynomial collocation method to find an approximate solution of the original problem. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信