{"title":"一类奇异分数微分方程的多项式配位法","authors":"Ghulam Abbas Khan , Kaido Lätt , Magda Rebelo","doi":"10.1016/j.apnum.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we consider a class of singular fractional differential equations (SFDEs). Using a suitable variable transformation we rewrite the SFDE as a cordial Volterra integral equation and propose a polynomial collocation method to find an approximate solution of the original problem. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polynomial collocation method for a class of singular fractional differential equations\",\"authors\":\"Ghulam Abbas Khan , Kaido Lätt , Magda Rebelo\",\"doi\":\"10.1016/j.apnum.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we consider a class of singular fractional differential equations (SFDEs). Using a suitable variable transformation we rewrite the SFDE as a cordial Volterra integral equation and propose a polynomial collocation method to find an approximate solution of the original problem. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A polynomial collocation method for a class of singular fractional differential equations
In this work we consider a class of singular fractional differential equations (SFDEs). Using a suitable variable transformation we rewrite the SFDE as a cordial Volterra integral equation and propose a polynomial collocation method to find an approximate solution of the original problem. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples.