{"title":"大型语言模型能否成为冠状动脉计算机断层扫描血管造影报告的新辅助工具?","authors":"Eren Çamur , Turay Cesur , Yasin Celal Güneş","doi":"10.1016/j.clinimag.2024.110271","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of large language models (LLMs) marks a transformative leap in natural language processing, offering unprecedented potential in radiology, particularly in enhancing the accuracy and efficiency of coronary artery disease (CAD) diagnosis. While previous studies have explored the capabilities of specific LLMs like ChatGPT in cardiac imaging, a comprehensive evaluation comparing multiple LLMs in the context of CAD-RADS 2.0 has been lacking. This study addresses this gap by assessing the performance of various LLMs, including ChatGPT 4, ChatGPT 4o, Claude 3 Opus, Gemini 1.5 Pro, Mistral Large, Meta Llama 3 70B, and Perplexity Pro, in answering 30 multiple-choice questions derived from the CAD-RADS 2.0 guidelines. Our findings reveal that ChatGPT 4o achieved the highest accuracy at 100 %, with ChatGPT 4 and Claude 3 Opus closely following at 96.6 %. Other models, including Mistral Large, Perplexity Pro, Meta Llama 3 70B, and Gemini 1.5 Pro, also demonstrated commendable performance, though with slightly lower accuracy ranging from 90 % to 93.3 %. This study underscores the proficiency of current LLMs in understanding and applying CAD-RADS 2.0, suggesting their potential to significantly enhance radiological reporting and patient care in coronary artery disease. The variations in model performance highlight the need for further research, particularly in evaluating the visual diagnostic capabilities of LLMs—a critical component of radiology practice. This study provides a foundational comparison of LLMs in CAD-RADS 2.0 and sets the stage for future investigations into their broader applications in radiology, emphasizing the importance of integrating both text-based and visual knowledge for optimal clinical outcomes.</p></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":"114 ","pages":"Article 110271"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can large language models be new supportive tools in coronary computed tomography angiography reporting?\",\"authors\":\"Eren Çamur , Turay Cesur , Yasin Celal Güneş\",\"doi\":\"10.1016/j.clinimag.2024.110271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advent of large language models (LLMs) marks a transformative leap in natural language processing, offering unprecedented potential in radiology, particularly in enhancing the accuracy and efficiency of coronary artery disease (CAD) diagnosis. While previous studies have explored the capabilities of specific LLMs like ChatGPT in cardiac imaging, a comprehensive evaluation comparing multiple LLMs in the context of CAD-RADS 2.0 has been lacking. This study addresses this gap by assessing the performance of various LLMs, including ChatGPT 4, ChatGPT 4o, Claude 3 Opus, Gemini 1.5 Pro, Mistral Large, Meta Llama 3 70B, and Perplexity Pro, in answering 30 multiple-choice questions derived from the CAD-RADS 2.0 guidelines. Our findings reveal that ChatGPT 4o achieved the highest accuracy at 100 %, with ChatGPT 4 and Claude 3 Opus closely following at 96.6 %. Other models, including Mistral Large, Perplexity Pro, Meta Llama 3 70B, and Gemini 1.5 Pro, also demonstrated commendable performance, though with slightly lower accuracy ranging from 90 % to 93.3 %. This study underscores the proficiency of current LLMs in understanding and applying CAD-RADS 2.0, suggesting their potential to significantly enhance radiological reporting and patient care in coronary artery disease. The variations in model performance highlight the need for further research, particularly in evaluating the visual diagnostic capabilities of LLMs—a critical component of radiology practice. This study provides a foundational comparison of LLMs in CAD-RADS 2.0 and sets the stage for future investigations into their broader applications in radiology, emphasizing the importance of integrating both text-based and visual knowledge for optimal clinical outcomes.</p></div>\",\"PeriodicalId\":50680,\"journal\":{\"name\":\"Clinical Imaging\",\"volume\":\"114 \",\"pages\":\"Article 110271\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0899707124002018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707124002018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Can large language models be new supportive tools in coronary computed tomography angiography reporting?
The advent of large language models (LLMs) marks a transformative leap in natural language processing, offering unprecedented potential in radiology, particularly in enhancing the accuracy and efficiency of coronary artery disease (CAD) diagnosis. While previous studies have explored the capabilities of specific LLMs like ChatGPT in cardiac imaging, a comprehensive evaluation comparing multiple LLMs in the context of CAD-RADS 2.0 has been lacking. This study addresses this gap by assessing the performance of various LLMs, including ChatGPT 4, ChatGPT 4o, Claude 3 Opus, Gemini 1.5 Pro, Mistral Large, Meta Llama 3 70B, and Perplexity Pro, in answering 30 multiple-choice questions derived from the CAD-RADS 2.0 guidelines. Our findings reveal that ChatGPT 4o achieved the highest accuracy at 100 %, with ChatGPT 4 and Claude 3 Opus closely following at 96.6 %. Other models, including Mistral Large, Perplexity Pro, Meta Llama 3 70B, and Gemini 1.5 Pro, also demonstrated commendable performance, though with slightly lower accuracy ranging from 90 % to 93.3 %. This study underscores the proficiency of current LLMs in understanding and applying CAD-RADS 2.0, suggesting their potential to significantly enhance radiological reporting and patient care in coronary artery disease. The variations in model performance highlight the need for further research, particularly in evaluating the visual diagnostic capabilities of LLMs—a critical component of radiology practice. This study provides a foundational comparison of LLMs in CAD-RADS 2.0 and sets the stage for future investigations into their broader applications in radiology, emphasizing the importance of integrating both text-based and visual knowledge for optimal clinical outcomes.
期刊介绍:
The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include:
-Body Imaging-
Breast Imaging-
Cardiothoracic Imaging-
Imaging Physics and Informatics-
Molecular Imaging and Nuclear Medicine-
Musculoskeletal and Emergency Imaging-
Neuroradiology-
Practice, Policy & Education-
Pediatric Imaging-
Vascular and Interventional Radiology