{"title":"亚热带森林遭受极端雪害后蒸发和蒸腾作用的非同步恢复","authors":"","doi":"10.1016/j.ejrh.2024.101947","DOIUrl":null,"url":null,"abstract":"<div><p><em>Study region:</em> The Ailaoshan National Nature Reserve forest is a mountainous water catchment area for the Lancang River basin and a subtropical ecological conservation area in southwest China. <em>Study focus:</em> The study aimed to understand how water fluxes in a subtropical forest responds to extreme weather disturbances and their recoveries in the post-damage years. We used eddy covariance data (2010–2019) to investigate the evapotranspiration (ET), transpiration (T), evaporation (E), and canopy conductance (Gc) before and after an extreme snow event in 2015. <em>New Hydrological Insights:</em> In the snow damage year, the leaf area index (LAI) decreased by 49 % compared to the pre-damage levels. The severe vegetation damage caused a significant decrease in ET, T, E, and Gc by 35 %, 36 %, 23 %, and 33 %, respectively, compared to the pre-damage levels. T returned to its pre-damage level in 2016, one year after the snow damage. In contrast, LAI, ET, E and Gc recovered to their pre-damage levels in 2018, four years after the initial damage. Reduced ET caused a strong positive RF<sub>ET</sub>, which diminished forest evaporative cooling and resilience. Our results suggest that the delayed E recovery enables water reserves in the ecosystems to be used through T to support rapid understory vegetation growth. This mechanism plays critical in bolstering ecosystem resilience as it facilitates swift recovery following disturbances in subtropical forests.</p></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214581824002969/pdfft?md5=c116713a14109f89bc5c34cdf04a5092&pid=1-s2.0-S2214581824002969-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Asynchronous recovery of evaporation and transpiration following extreme snow damage in a subtropical forest\",\"authors\":\"\",\"doi\":\"10.1016/j.ejrh.2024.101947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Study region:</em> The Ailaoshan National Nature Reserve forest is a mountainous water catchment area for the Lancang River basin and a subtropical ecological conservation area in southwest China. <em>Study focus:</em> The study aimed to understand how water fluxes in a subtropical forest responds to extreme weather disturbances and their recoveries in the post-damage years. We used eddy covariance data (2010–2019) to investigate the evapotranspiration (ET), transpiration (T), evaporation (E), and canopy conductance (Gc) before and after an extreme snow event in 2015. <em>New Hydrological Insights:</em> In the snow damage year, the leaf area index (LAI) decreased by 49 % compared to the pre-damage levels. The severe vegetation damage caused a significant decrease in ET, T, E, and Gc by 35 %, 36 %, 23 %, and 33 %, respectively, compared to the pre-damage levels. T returned to its pre-damage level in 2016, one year after the snow damage. In contrast, LAI, ET, E and Gc recovered to their pre-damage levels in 2018, four years after the initial damage. Reduced ET caused a strong positive RF<sub>ET</sub>, which diminished forest evaporative cooling and resilience. Our results suggest that the delayed E recovery enables water reserves in the ecosystems to be used through T to support rapid understory vegetation growth. This mechanism plays critical in bolstering ecosystem resilience as it facilitates swift recovery following disturbances in subtropical forests.</p></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214581824002969/pdfft?md5=c116713a14109f89bc5c34cdf04a5092&pid=1-s2.0-S2214581824002969-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824002969\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824002969","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Asynchronous recovery of evaporation and transpiration following extreme snow damage in a subtropical forest
Study region: The Ailaoshan National Nature Reserve forest is a mountainous water catchment area for the Lancang River basin and a subtropical ecological conservation area in southwest China. Study focus: The study aimed to understand how water fluxes in a subtropical forest responds to extreme weather disturbances and their recoveries in the post-damage years. We used eddy covariance data (2010–2019) to investigate the evapotranspiration (ET), transpiration (T), evaporation (E), and canopy conductance (Gc) before and after an extreme snow event in 2015. New Hydrological Insights: In the snow damage year, the leaf area index (LAI) decreased by 49 % compared to the pre-damage levels. The severe vegetation damage caused a significant decrease in ET, T, E, and Gc by 35 %, 36 %, 23 %, and 33 %, respectively, compared to the pre-damage levels. T returned to its pre-damage level in 2016, one year after the snow damage. In contrast, LAI, ET, E and Gc recovered to their pre-damage levels in 2018, four years after the initial damage. Reduced ET caused a strong positive RFET, which diminished forest evaporative cooling and resilience. Our results suggest that the delayed E recovery enables water reserves in the ecosystems to be used through T to support rapid understory vegetation growth. This mechanism plays critical in bolstering ecosystem resilience as it facilitates swift recovery following disturbances in subtropical forests.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.