{"title":"基于实验室测试的典型城市道路降雨径流响应特性","authors":"","doi":"10.1016/j.trd.2024.104402","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming to address the lack of available and accurate runoff coefficients of various roads in urban flooding simulations and effectiveness assessments of permeable pavement on runoff reduction, the rainfall-runoff response characteristics of typical urban road pavements were investigated by laboratory-scaled tests. The results showed that average runoff coefficients and initial runoff times of pervious road pavements were almost 0.1 ∼ 0.2 and 7 ∼ 20 times those of impervious pavements, respectively. Moreover, permeable brick (PB) pavement presented better capacity for runoff mitigation than permeable asphalt concrete (PAC) pavement when the average rainfall intensity was 1.11 or 1.80 mm/min. The average runoff coefficient of cement concrete (CC) pavement ranged from 0.939 to 0.985 under all rainfall intensity and longitudinal slope combinations, while that of asphalt concrete (AC) was between 0.907 and 0.961. These results may be beneficial to improving the precision of runoff computation generated from roads or other site areas in urban flooding simulations.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall runoff response characteristics of typical urban roads based on laboratory tests\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming to address the lack of available and accurate runoff coefficients of various roads in urban flooding simulations and effectiveness assessments of permeable pavement on runoff reduction, the rainfall-runoff response characteristics of typical urban road pavements were investigated by laboratory-scaled tests. The results showed that average runoff coefficients and initial runoff times of pervious road pavements were almost 0.1 ∼ 0.2 and 7 ∼ 20 times those of impervious pavements, respectively. Moreover, permeable brick (PB) pavement presented better capacity for runoff mitigation than permeable asphalt concrete (PAC) pavement when the average rainfall intensity was 1.11 or 1.80 mm/min. The average runoff coefficient of cement concrete (CC) pavement ranged from 0.939 to 0.985 under all rainfall intensity and longitudinal slope combinations, while that of asphalt concrete (AC) was between 0.907 and 0.961. These results may be beneficial to improving the precision of runoff computation generated from roads or other site areas in urban flooding simulations.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361920924003596\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003596","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Rainfall runoff response characteristics of typical urban roads based on laboratory tests
Aiming to address the lack of available and accurate runoff coefficients of various roads in urban flooding simulations and effectiveness assessments of permeable pavement on runoff reduction, the rainfall-runoff response characteristics of typical urban road pavements were investigated by laboratory-scaled tests. The results showed that average runoff coefficients and initial runoff times of pervious road pavements were almost 0.1 ∼ 0.2 and 7 ∼ 20 times those of impervious pavements, respectively. Moreover, permeable brick (PB) pavement presented better capacity for runoff mitigation than permeable asphalt concrete (PAC) pavement when the average rainfall intensity was 1.11 or 1.80 mm/min. The average runoff coefficient of cement concrete (CC) pavement ranged from 0.939 to 0.985 under all rainfall intensity and longitudinal slope combinations, while that of asphalt concrete (AC) was between 0.907 and 0.961. These results may be beneficial to improving the precision of runoff computation generated from roads or other site areas in urban flooding simulations.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.