{"title":"通过多层感知器分解架构实现数据融合集成网络预测方案分类器(DFI-NFSC)","authors":"Erdem Çakan , Volkan Rodoplu , Cüneyt Güzeliş","doi":"10.1016/j.iot.2024.101341","DOIUrl":null,"url":null,"abstract":"<div><p>The Massive Access Problem of the Internet of Things stands for the access problem of the wireless devices to the Gateway when the device population in the coverage area is excessive. We develop a hybrid model called Data Fusion Integrated Network Forecasting Scheme Classifier (DFI-NFSC) using a Multi-Layer Perceptron (MLP) Decomposition architecture specifically designed to address the Massive Access Problem. We utilize our custom error metric to display throughput and energy consumption results. These results are obtained by emulating the Joint Forecasting–Scheduling (JFS) system on a single IoT Gateway and distinguishing between ARIMA, LSTM, and MLP forecasters of the JFS system. The outcomes indicate that the DFI-NFCS method plays a notable role in improving performance and mitigating challenges arising from the dynamic fluctuations in the diversity of device types within an IoT gateway’s coverage zone.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101341"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data fusion integrated network forecasting scheme classifier (DFI-NFSC) via multi-layer perceptron decomposition architecture\",\"authors\":\"Erdem Çakan , Volkan Rodoplu , Cüneyt Güzeliş\",\"doi\":\"10.1016/j.iot.2024.101341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Massive Access Problem of the Internet of Things stands for the access problem of the wireless devices to the Gateway when the device population in the coverage area is excessive. We develop a hybrid model called Data Fusion Integrated Network Forecasting Scheme Classifier (DFI-NFSC) using a Multi-Layer Perceptron (MLP) Decomposition architecture specifically designed to address the Massive Access Problem. We utilize our custom error metric to display throughput and energy consumption results. These results are obtained by emulating the Joint Forecasting–Scheduling (JFS) system on a single IoT Gateway and distinguishing between ARIMA, LSTM, and MLP forecasters of the JFS system. The outcomes indicate that the DFI-NFCS method plays a notable role in improving performance and mitigating challenges arising from the dynamic fluctuations in the diversity of device types within an IoT gateway’s coverage zone.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101341\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002828\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002828","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Data fusion integrated network forecasting scheme classifier (DFI-NFSC) via multi-layer perceptron decomposition architecture
The Massive Access Problem of the Internet of Things stands for the access problem of the wireless devices to the Gateway when the device population in the coverage area is excessive. We develop a hybrid model called Data Fusion Integrated Network Forecasting Scheme Classifier (DFI-NFSC) using a Multi-Layer Perceptron (MLP) Decomposition architecture specifically designed to address the Massive Access Problem. We utilize our custom error metric to display throughput and energy consumption results. These results are obtained by emulating the Joint Forecasting–Scheduling (JFS) system on a single IoT Gateway and distinguishing between ARIMA, LSTM, and MLP forecasters of the JFS system. The outcomes indicate that the DFI-NFCS method plays a notable role in improving performance and mitigating challenges arising from the dynamic fluctuations in the diversity of device types within an IoT gateway’s coverage zone.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.