Nafiseh Mohammadi , Alex Klein-Paste , Kai Rune Lysbakken
{"title":"模拟冬季维护工作:多线性回归模型","authors":"Nafiseh Mohammadi , Alex Klein-Paste , Kai Rune Lysbakken","doi":"10.1016/j.coldregions.2024.104307","DOIUrl":null,"url":null,"abstract":"<div><p>Winter Road Maintenance (WRM) ensures road mobility and safety by mitigating adverse weather conditions. Yet, it is costly and environmentally impactful. Balancing these expenses, impacts, and benefits is challenging. Simulating winter maintenance services offers a potential new tool to find this balance. In this paper, we analyze Norway's WRM of state roads during the 2021–2022 winter season and propose an effort model. This model forms the computational core of the simulation, predicting the number of plowing, salting, and plowing-salting operations at any given location over the road network. This is a multi-linear regression model based on the Gaussian/OLS method and comprises three sub-models, one for each of the aforementioned operations. The key explanatory variables are: 1) level of service (LOS), 2) road width, 3) height above mean sea level, 4) Average Annual Daily Traffic (AADT), 5) snowfall duration, 6) snow depth, 7) number of snow days (fallen snow and drifting snow), 8) number of freezing-rain days, 9) number of cold days and 10) number of days with temperature fluctuations. The overall effort prediction accuracy for the winter season 2021–2022 was 71 %. The independent variables, the model's outcomes, and its results when applied to simulate the effects of LOS downgrading on a particular road stretch and estimating CO₂ emission over the whole network, are discussed.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"227 ","pages":"Article 104307"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165232X24001885/pdfft?md5=80423bfe3203bba0e05b915dd8a8285a&pid=1-s2.0-S0165232X24001885-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Simulating winter maintenance efforts: A multi-linear regression model\",\"authors\":\"Nafiseh Mohammadi , Alex Klein-Paste , Kai Rune Lysbakken\",\"doi\":\"10.1016/j.coldregions.2024.104307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Winter Road Maintenance (WRM) ensures road mobility and safety by mitigating adverse weather conditions. Yet, it is costly and environmentally impactful. Balancing these expenses, impacts, and benefits is challenging. Simulating winter maintenance services offers a potential new tool to find this balance. In this paper, we analyze Norway's WRM of state roads during the 2021–2022 winter season and propose an effort model. This model forms the computational core of the simulation, predicting the number of plowing, salting, and plowing-salting operations at any given location over the road network. This is a multi-linear regression model based on the Gaussian/OLS method and comprises three sub-models, one for each of the aforementioned operations. The key explanatory variables are: 1) level of service (LOS), 2) road width, 3) height above mean sea level, 4) Average Annual Daily Traffic (AADT), 5) snowfall duration, 6) snow depth, 7) number of snow days (fallen snow and drifting snow), 8) number of freezing-rain days, 9) number of cold days and 10) number of days with temperature fluctuations. The overall effort prediction accuracy for the winter season 2021–2022 was 71 %. The independent variables, the model's outcomes, and its results when applied to simulate the effects of LOS downgrading on a particular road stretch and estimating CO₂ emission over the whole network, are discussed.</p></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"227 \",\"pages\":\"Article 104307\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24001885/pdfft?md5=80423bfe3203bba0e05b915dd8a8285a&pid=1-s2.0-S0165232X24001885-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24001885\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001885","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Simulating winter maintenance efforts: A multi-linear regression model
Winter Road Maintenance (WRM) ensures road mobility and safety by mitigating adverse weather conditions. Yet, it is costly and environmentally impactful. Balancing these expenses, impacts, and benefits is challenging. Simulating winter maintenance services offers a potential new tool to find this balance. In this paper, we analyze Norway's WRM of state roads during the 2021–2022 winter season and propose an effort model. This model forms the computational core of the simulation, predicting the number of plowing, salting, and plowing-salting operations at any given location over the road network. This is a multi-linear regression model based on the Gaussian/OLS method and comprises three sub-models, one for each of the aforementioned operations. The key explanatory variables are: 1) level of service (LOS), 2) road width, 3) height above mean sea level, 4) Average Annual Daily Traffic (AADT), 5) snowfall duration, 6) snow depth, 7) number of snow days (fallen snow and drifting snow), 8) number of freezing-rain days, 9) number of cold days and 10) number of days with temperature fluctuations. The overall effort prediction accuracy for the winter season 2021–2022 was 71 %. The independent variables, the model's outcomes, and its results when applied to simulate the effects of LOS downgrading on a particular road stretch and estimating CO₂ emission over the whole network, are discussed.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.