{"title":"关于非球面构型李群","authors":"S.K. Roushon","doi":"10.1016/j.topol.2024.109052","DOIUrl":null,"url":null,"abstract":"<div><p>The complement of the hyperplanes <span><math><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span>, for all <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>, in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <em>M</em> is an aspherical 2-manifold, is known to be aspherical. Here we consider the situation when <em>M</em> is a 2-dimensional orbifold. We prove this complement to be aspherical for a class of aspherical 2-dimensional orbifolds, and predict that it should be true in general also. We generalize this question in the category of Lie groupoids, as orbifolds can be identified with a certain kind of Lie groupoids.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"356 ","pages":"Article 109052"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On aspherical configuration Lie groupoids\",\"authors\":\"S.K. Roushon\",\"doi\":\"10.1016/j.topol.2024.109052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complement of the hyperplanes <span><math><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span>, for all <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>, in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <em>M</em> is an aspherical 2-manifold, is known to be aspherical. Here we consider the situation when <em>M</em> is a 2-dimensional orbifold. We prove this complement to be aspherical for a class of aspherical 2-dimensional orbifolds, and predict that it should be true in general also. We generalize this question in the category of Lie groupoids, as orbifolds can be identified with a certain kind of Lie groupoids.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"356 \",\"pages\":\"Article 109052\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002372\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002372","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
已知 Mn 中所有 i≠j 的超平面 {xi=xj} 的补集是非球面的,其中 M 是一个非球面的 2 维漫游体。这里我们考虑 M 是二维轨道的情况。我们证明了对于一类非球面二维球面来说,这个补集是非球面的,并预言它在一般情况下也应该是正确的。我们将这一问题推广到烈群范畴,因为轨道可以与某类烈群相提并论。
The complement of the hyperplanes , for all , in , where M is an aspherical 2-manifold, is known to be aspherical. Here we consider the situation when M is a 2-dimensional orbifold. We prove this complement to be aspherical for a class of aspherical 2-dimensional orbifolds, and predict that it should be true in general also. We generalize this question in the category of Lie groupoids, as orbifolds can be identified with a certain kind of Lie groupoids.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.