准均匀熵与拓扑熵

IF 0.6 4区 数学 Q3 MATHEMATICS
Paulus Haihambo , O. Olela Otafudu
{"title":"准均匀熵与拓扑熵","authors":"Paulus Haihambo ,&nbsp;O. Olela Otafudu","doi":"10.1016/j.topol.2024.109054","DOIUrl":null,"url":null,"abstract":"<div><p>In 2023 Haihambo and Olela Otafudu introduced and studied the notion of quasi-uniform entropy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> for a uniformly continuous self-map <em>ψ</em> of a quasi-metric or a quasi-uniform space <em>X</em>. In this paper, we discuss the connection between the topological entropy functions <span><math><mi>h</mi><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> and the quasi-uniform entropy function <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub></math></span> on a quasi-uniform space <em>X</em>, where <em>h</em> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> are the topological entropy functions defined using compact sets and finite open covers, respectively. In particular, we have shown that for a uniformly continuous self-map <em>ψ</em> of a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-quasi-uniform space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>U</mi><mo>)</mo></math></span> we have <span><math><mi>h</mi><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> when <em>X</em> is compact and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> with equality if <em>X</em> is a compact <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> space.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"356 ","pages":"Article 109054"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-uniform entropy vs topological entropy\",\"authors\":\"Paulus Haihambo ,&nbsp;O. Olela Otafudu\",\"doi\":\"10.1016/j.topol.2024.109054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2023 Haihambo and Olela Otafudu introduced and studied the notion of quasi-uniform entropy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> for a uniformly continuous self-map <em>ψ</em> of a quasi-metric or a quasi-uniform space <em>X</em>. In this paper, we discuss the connection between the topological entropy functions <span><math><mi>h</mi><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> and the quasi-uniform entropy function <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub></math></span> on a quasi-uniform space <em>X</em>, where <em>h</em> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> are the topological entropy functions defined using compact sets and finite open covers, respectively. In particular, we have shown that for a uniformly continuous self-map <em>ψ</em> of a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-quasi-uniform space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>U</mi><mo>)</mo></math></span> we have <span><math><mi>h</mi><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> when <em>X</em> is compact and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Q</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> with equality if <em>X</em> is a compact <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> space.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"356 \",\"pages\":\"Article 109054\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002396\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002396","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2023 年,Haihambo 和 Olela Otafudu 提出并研究了准度量空间或准均匀空间 X 的均匀连续自映射 ψ 的准均匀熵 hQU(ψ) 概念。本文讨论了拓扑熵函数 h,hf 与准均匀空间 X 上的准均匀熵函数 hQU 之间的联系,其中 h 和 hf 分别是用紧凑集和有限开盖定义的拓扑熵函数。特别是,我们已经证明,对于 T0-准均匀空间 (X,U) 的均匀连续自映射 ψ,当 X 紧凑时,有 h(ψ)≤hQU(ψ) ;如果 X 是紧凑的 T2 空间,则 hQU(ψ)≤hf(ψ) 相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-uniform entropy vs topological entropy

In 2023 Haihambo and Olela Otafudu introduced and studied the notion of quasi-uniform entropy hQU(ψ) for a uniformly continuous self-map ψ of a quasi-metric or a quasi-uniform space X. In this paper, we discuss the connection between the topological entropy functions h,hf and the quasi-uniform entropy function hQU on a quasi-uniform space X, where h and hf are the topological entropy functions defined using compact sets and finite open covers, respectively. In particular, we have shown that for a uniformly continuous self-map ψ of a T0-quasi-uniform space (X,U) we have h(ψ)hQU(ψ) when X is compact and hQU(ψ)hf(ψ) with equality if X is a compact T2 space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信