在 PGNAA 中建模和绘制几何图形

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"在 PGNAA 中建模和绘制几何图形","authors":"","doi":"10.1016/j.cpc.2024.109360","DOIUrl":null,"url":null,"abstract":"<div><p>Prompt Gamma Neutron Analysis Activation is a widely used technique for analyzing materials. This technique defines graphs (reference spectrum collection, or libraries) of spectral intensity as a function of energy (channels) for the elements inserted in a sample. The Monte Carlo Library Least Squares (MCLLS) is the dominant approach in the PGNAA technique. The main difficulties faced in the MCLLS domain are (1) numerical instabilities in the least-squares stage (Library Least Squares (LLS)); (2) overdetermination of the system of equations; (3) linear dependence in the libraries; (4) gamma radiation scattering; (5) high computational costs. The present work proposes optimizing the LLS module to face the abovementioned problems using the Greedy Randomized Adaptive Search Procedure (GRASP) and Continuous Greedy Randomized Adaptive Search Procedure (CGRASP) algorithms. The search for the spectral count peaks of the libraries leads to a partitioning of the data before applying the GRASP and CGRASP algorithms. The methodological procedures also address estimating the spectral counts of an unknown library possibly integrates the sample. The results show (1) efficient partitioning of the input data (2) evidence of suitable precision of the weight fractions of the libraries that make up the sample (average precision of the order of 3.16% against 8.8% of other methods); (3) success in the approximation and estimation of the unknown library (average precision of 4.25%) present in the sample. Our method proved to be promising in improving the determination of percentage count fractions by the least-squares module and showing the advantages of data partitioning.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and geometrization in PGNAA\",\"authors\":\"\",\"doi\":\"10.1016/j.cpc.2024.109360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prompt Gamma Neutron Analysis Activation is a widely used technique for analyzing materials. This technique defines graphs (reference spectrum collection, or libraries) of spectral intensity as a function of energy (channels) for the elements inserted in a sample. The Monte Carlo Library Least Squares (MCLLS) is the dominant approach in the PGNAA technique. The main difficulties faced in the MCLLS domain are (1) numerical instabilities in the least-squares stage (Library Least Squares (LLS)); (2) overdetermination of the system of equations; (3) linear dependence in the libraries; (4) gamma radiation scattering; (5) high computational costs. The present work proposes optimizing the LLS module to face the abovementioned problems using the Greedy Randomized Adaptive Search Procedure (GRASP) and Continuous Greedy Randomized Adaptive Search Procedure (CGRASP) algorithms. The search for the spectral count peaks of the libraries leads to a partitioning of the data before applying the GRASP and CGRASP algorithms. The methodological procedures also address estimating the spectral counts of an unknown library possibly integrates the sample. The results show (1) efficient partitioning of the input data (2) evidence of suitable precision of the weight fractions of the libraries that make up the sample (average precision of the order of 3.16% against 8.8% of other methods); (3) success in the approximation and estimation of the unknown library (average precision of 4.25%) present in the sample. Our method proved to be promising in improving the determination of percentage count fractions by the least-squares module and showing the advantages of data partitioning.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002832\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002832","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

即时伽马中子分析活化是一种广泛使用的材料分析技术。该技术定义了插入样品中的元素的光谱强度与能量(通道)的函数关系图(参考谱收集或库)。蒙特卡洛最小二乘法(MCLLS)是 PGNAA 技术的主要方法。MCLLS 领域面临的主要困难是:(1)最小二乘法阶段(库最小二乘法(LLS))的数值不稳定性;(2)方程组的过度确定;(3)库的线性依赖性;(4)伽马辐射散射;(5)计算成本高。针对上述问题,本研究提出利用贪婪随机自适应搜索程序(GRASP)和连续贪婪随机自适应搜索程序(CGRASP)算法对 LLS 模块进行优化。在应用 GRASP 和 CGRASP 算法之前,对库的光谱计数峰进行搜索,从而对数据进行分区。这些方法程序还可以估算可能整合样本的未知文库的光谱计数。结果表明:(1) 对输入数据进行了有效的分区;(2) 证明了组成样本的库的权重分数具有适当的精度(平均精度为 3.16%,而其他方法为 8.8%);(3) 成功逼近和估计了样本中的未知库(平均精度为 4.25%)。事实证明,我们的方法在改进用最小二乘模块确定百分比计数分数方面大有可为,并显示了数据分区的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and geometrization in PGNAA

Prompt Gamma Neutron Analysis Activation is a widely used technique for analyzing materials. This technique defines graphs (reference spectrum collection, or libraries) of spectral intensity as a function of energy (channels) for the elements inserted in a sample. The Monte Carlo Library Least Squares (MCLLS) is the dominant approach in the PGNAA technique. The main difficulties faced in the MCLLS domain are (1) numerical instabilities in the least-squares stage (Library Least Squares (LLS)); (2) overdetermination of the system of equations; (3) linear dependence in the libraries; (4) gamma radiation scattering; (5) high computational costs. The present work proposes optimizing the LLS module to face the abovementioned problems using the Greedy Randomized Adaptive Search Procedure (GRASP) and Continuous Greedy Randomized Adaptive Search Procedure (CGRASP) algorithms. The search for the spectral count peaks of the libraries leads to a partitioning of the data before applying the GRASP and CGRASP algorithms. The methodological procedures also address estimating the spectral counts of an unknown library possibly integrates the sample. The results show (1) efficient partitioning of the input data (2) evidence of suitable precision of the weight fractions of the libraries that make up the sample (average precision of the order of 3.16% against 8.8% of other methods); (3) success in the approximation and estimation of the unknown library (average precision of 4.25%) present in the sample. Our method proved to be promising in improving the determination of percentage count fractions by the least-squares module and showing the advantages of data partitioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信