将 MXene-Co-MOF 原位电化学氧化还原调谐为 MXene/TiO2@Co3O4 纳米片,提高其活性和稳定性

Xiangfei Sun , Kunfeng Chen , Dongfeng Xue
{"title":"将 MXene-Co-MOF 原位电化学氧化还原调谐为 MXene/TiO2@Co3O4 纳米片,提高其活性和稳定性","authors":"Xiangfei Sun ,&nbsp;Kunfeng Chen ,&nbsp;Dongfeng Xue","doi":"10.1016/j.nxener.2024.100183","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors have witnessed significant development in recent years due to their high power density, fast charging rate, and excellent cycle stability, which can be used in wearable devices, electric wheel loader, and other energy storage systems for needing high discharge rate. Designing a simple synthetic protocol to simultaneously produce electrode materials with high activity and stability is a significant challenge for high-performance supercapacitors. Herein, we developed an one-step <em>in situ</em> electrochemical oxidation method to develop MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> nanosheets at room temperature and neutral solution from their corresponding MXene-Co-MOF. The dual role of <em>in-situ</em> electrochemical oxidation reaction was presented: (1) the electrochemical oxidation reaction facilitates the decomposition of Co<sub>3</sub>(HHTP)<sub>2</sub> MOF to Co<sub>3</sub>O<sub>4</sub> and the transformation of the part of MXene to TiO<sub>2</sub>; (2) the electrochemical oxidation reaction enhances the Faradaic activity of electrode materials by forming more active sites on weak crystalline MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub>. The electrochemically tuned MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> nanosheets grown directly on the Ni foam electrodes exhibit high specific capacitance of up to 2403 F g<sup>−1</sup> at current density of 1 A g<sup>−1</sup>. When assembled into an asymmetric supercapacitors (ASC) device, the MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub>//AC device obtains a high energy density of 55.8 Wh kg<sup>−1</sup> at a power density of 799.7 W kg<sup>−1</sup> and appears 78.6% retention after 5000 cycles stability test. The improved activities are attributed to the introduction of oxygen vacancies, more active sites with poor-crystalline phase. This work provides a promising <em>in situ</em> electrochemistry strategy to develop electrode materials alternatives for supercapacitor applications.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000887/pdfft?md5=43bd87a7a2c7650b0c54e8bc43482583&pid=1-s2.0-S2949821X24000887-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In situ electrochemical redox tuning of MXene-Co-MOF to MXene/TiO2@Co3O4 nanosheet with enhanced activity and stability\",\"authors\":\"Xiangfei Sun ,&nbsp;Kunfeng Chen ,&nbsp;Dongfeng Xue\",\"doi\":\"10.1016/j.nxener.2024.100183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supercapacitors have witnessed significant development in recent years due to their high power density, fast charging rate, and excellent cycle stability, which can be used in wearable devices, electric wheel loader, and other energy storage systems for needing high discharge rate. Designing a simple synthetic protocol to simultaneously produce electrode materials with high activity and stability is a significant challenge for high-performance supercapacitors. Herein, we developed an one-step <em>in situ</em> electrochemical oxidation method to develop MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> nanosheets at room temperature and neutral solution from their corresponding MXene-Co-MOF. The dual role of <em>in-situ</em> electrochemical oxidation reaction was presented: (1) the electrochemical oxidation reaction facilitates the decomposition of Co<sub>3</sub>(HHTP)<sub>2</sub> MOF to Co<sub>3</sub>O<sub>4</sub> and the transformation of the part of MXene to TiO<sub>2</sub>; (2) the electrochemical oxidation reaction enhances the Faradaic activity of electrode materials by forming more active sites on weak crystalline MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub>. The electrochemically tuned MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> nanosheets grown directly on the Ni foam electrodes exhibit high specific capacitance of up to 2403 F g<sup>−1</sup> at current density of 1 A g<sup>−1</sup>. When assembled into an asymmetric supercapacitors (ASC) device, the MXene/TiO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub>//AC device obtains a high energy density of 55.8 Wh kg<sup>−1</sup> at a power density of 799.7 W kg<sup>−1</sup> and appears 78.6% retention after 5000 cycles stability test. The improved activities are attributed to the introduction of oxygen vacancies, more active sites with poor-crystalline phase. This work provides a promising <em>in situ</em> electrochemistry strategy to develop electrode materials alternatives for supercapacitor applications.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"6 \",\"pages\":\"Article 100183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000887/pdfft?md5=43bd87a7a2c7650b0c54e8bc43482583&pid=1-s2.0-S2949821X24000887-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器具有功率密度高、充电速度快、循环稳定性好等优点,可用于可穿戴设备、电动轮式装载机和其他需要高放电率的储能系统,因此近年来得到了长足的发展。设计一种简单的合成方案,同时生产出具有高活性和稳定性的电极材料,是高性能超级电容器面临的一项重大挑战。在此,我们开发了一种一步法原位电化学氧化方法,在室温和中性溶液中从相应的 MXene-Co-MOF 中制备出 MXene/TiO2@Co3O4 纳米片。原位电化学氧化反应具有双重作用:(1)电化学氧化反应促进了 Co3(HHTP)2 MOF 向 Co3O4 的分解以及 MXene 部分向 TiO2 的转化;(2)电化学氧化反应通过在弱结晶 MXene/TiO2@Co3O4 上形成更多的活性位点来提高电极材料的法拉第活性。直接生长在泡沫镍电极上的电化学调谐 MXene/TiO2@Co3O4 纳米片在电流密度为 1 A g-1 时具有高达 2403 F g-1 的比电容。当组装成不对称超级电容器(ASC)装置时,MXene/TiO2@Co3O4/AC 装置在功率密度为 799.7 W kg-1 时可获得 55.8 Wh kg-1 的高能量密度,并在 5000 次稳定性测试后显示出 78.6% 的保持率。活性的提高归功于氧空位的引入,以及贫晶相活性位点的增加。这项工作为开发超级电容器应用的电极材料替代品提供了一种前景广阔的原位电化学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ electrochemical redox tuning of MXene-Co-MOF to MXene/TiO2@Co3O4 nanosheet with enhanced activity and stability

Supercapacitors have witnessed significant development in recent years due to their high power density, fast charging rate, and excellent cycle stability, which can be used in wearable devices, electric wheel loader, and other energy storage systems for needing high discharge rate. Designing a simple synthetic protocol to simultaneously produce electrode materials with high activity and stability is a significant challenge for high-performance supercapacitors. Herein, we developed an one-step in situ electrochemical oxidation method to develop MXene/TiO2@Co3O4 nanosheets at room temperature and neutral solution from their corresponding MXene-Co-MOF. The dual role of in-situ electrochemical oxidation reaction was presented: (1) the electrochemical oxidation reaction facilitates the decomposition of Co3(HHTP)2 MOF to Co3O4 and the transformation of the part of MXene to TiO2; (2) the electrochemical oxidation reaction enhances the Faradaic activity of electrode materials by forming more active sites on weak crystalline MXene/TiO2@Co3O4. The electrochemically tuned MXene/TiO2@Co3O4 nanosheets grown directly on the Ni foam electrodes exhibit high specific capacitance of up to 2403 F g−1 at current density of 1 A g−1. When assembled into an asymmetric supercapacitors (ASC) device, the MXene/TiO2@Co3O4//AC device obtains a high energy density of 55.8 Wh kg−1 at a power density of 799.7 W kg−1 and appears 78.6% retention after 5000 cycles stability test. The improved activities are attributed to the introduction of oxygen vacancies, more active sites with poor-crystalline phase. This work provides a promising in situ electrochemistry strategy to develop electrode materials alternatives for supercapacitor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信