利用克利福德代数方程求解杨-巴克斯特方程、四面体方程和高次单纯形方程

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
{"title":"利用克利福德代数方程求解杨-巴克斯特方程、四面体方程和高次单纯形方程","authors":"","doi":"10.1016/j.nuclphysb.2024.116664","DOIUrl":null,"url":null,"abstract":"<div><p>Bethe Ansatz was discovered in 1932. Half a century later its algebraic structure was unearthed: Yang-Baxter equation was discovered, as well as its multidimensional generalizations [tetrahedron equation and <em>d</em>-simplex equations]. Here we describe a universal method to solve these equations using Clifford algebras. The Yang-Baxter equation (<span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>), Zamolodchikov's tetrahedron equation (<span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>) and the Bazhanov-Stroganov equation (<span><math><mi>d</mi><mo>=</mo><mn>4</mn></math></span>) are special cases. Our solutions form a linear space. This helps us to include spectral parameters. Potential applications are discussed.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S055032132400230X/pdfft?md5=cacf76f9191ead08813e1b3c4b155908&pid=1-s2.0-S055032132400230X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solving the Yang-Baxter, tetrahedron and higher simplex equations using Clifford algebras\",\"authors\":\"\",\"doi\":\"10.1016/j.nuclphysb.2024.116664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bethe Ansatz was discovered in 1932. Half a century later its algebraic structure was unearthed: Yang-Baxter equation was discovered, as well as its multidimensional generalizations [tetrahedron equation and <em>d</em>-simplex equations]. Here we describe a universal method to solve these equations using Clifford algebras. The Yang-Baxter equation (<span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>), Zamolodchikov's tetrahedron equation (<span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>) and the Bazhanov-Stroganov equation (<span><math><mi>d</mi><mo>=</mo><mn>4</mn></math></span>) are special cases. Our solutions form a linear space. This helps us to include spectral parameters. Potential applications are discussed.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S055032132400230X/pdfft?md5=cacf76f9191ead08813e1b3c4b155908&pid=1-s2.0-S055032132400230X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S055032132400230X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S055032132400230X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

贝特公式发现于 1932 年。半个世纪后,它的代数结构被发掘出来:发现了杨-巴克斯特方程及其多维广义方程 [四面体方程和 d-复数方程]。在此,我们介绍一种利用克利福德代数求解这些方程的通用方法。杨-巴克斯特方程(d=2)、扎莫洛奇科夫四面体方程(d=3)和巴扎诺夫-斯特罗加诺夫方程(d=4)都是特例。我们的解形成了一个线性空间。这有助于我们纳入光谱参数。讨论了潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the Yang-Baxter, tetrahedron and higher simplex equations using Clifford algebras

Bethe Ansatz was discovered in 1932. Half a century later its algebraic structure was unearthed: Yang-Baxter equation was discovered, as well as its multidimensional generalizations [tetrahedron equation and d-simplex equations]. Here we describe a universal method to solve these equations using Clifford algebras. The Yang-Baxter equation (d=2), Zamolodchikov's tetrahedron equation (d=3) and the Bazhanov-Stroganov equation (d=4) are special cases. Our solutions form a linear space. This helps us to include spectral parameters. Potential applications are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信