{"title":"PyMTRD:用于计算时间降雨分布指标的 Python 软件包","authors":"","doi":"10.1016/j.envsoft.2024.106201","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal rainfall distribution facilitates the understanding of rainfall patterns at various time scales, extreme events, and corresponding water resources implications. Researchers have developed various metrics of temporal rainfall distribution but there exist no easy-to-use software packages for calculating these metrics. To address this gap, we developed the <em>PyMTRD</em> package, which can be conveniently used to calculate the metrics of temporal rainfall distribution and conduct rainfall pattern analysis. The metrics calculated in the package included rainfall intensity, rainfall frequency, consecutive dry days, Gini index, unranked Gini index, wet-day Gini index, precipitation concentration index, dimensionless seasonality index, and seasonality index. This paper documented our Python software development, which included the architecture design, the Application Programming Interfaces design and algorithms for calculating each metric, and also the point and global scale applications.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyMTRD: A Python package for calculating the metrics of temporal rainfall distribution\",\"authors\":\"\",\"doi\":\"10.1016/j.envsoft.2024.106201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temporal rainfall distribution facilitates the understanding of rainfall patterns at various time scales, extreme events, and corresponding water resources implications. Researchers have developed various metrics of temporal rainfall distribution but there exist no easy-to-use software packages for calculating these metrics. To address this gap, we developed the <em>PyMTRD</em> package, which can be conveniently used to calculate the metrics of temporal rainfall distribution and conduct rainfall pattern analysis. The metrics calculated in the package included rainfall intensity, rainfall frequency, consecutive dry days, Gini index, unranked Gini index, wet-day Gini index, precipitation concentration index, dimensionless seasonality index, and seasonality index. This paper documented our Python software development, which included the architecture design, the Application Programming Interfaces design and algorithms for calculating each metric, and also the point and global scale applications.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002627\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002627","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
PyMTRD: A Python package for calculating the metrics of temporal rainfall distribution
Temporal rainfall distribution facilitates the understanding of rainfall patterns at various time scales, extreme events, and corresponding water resources implications. Researchers have developed various metrics of temporal rainfall distribution but there exist no easy-to-use software packages for calculating these metrics. To address this gap, we developed the PyMTRD package, which can be conveniently used to calculate the metrics of temporal rainfall distribution and conduct rainfall pattern analysis. The metrics calculated in the package included rainfall intensity, rainfall frequency, consecutive dry days, Gini index, unranked Gini index, wet-day Gini index, precipitation concentration index, dimensionless seasonality index, and seasonality index. This paper documented our Python software development, which included the architecture design, the Application Programming Interfaces design and algorithms for calculating each metric, and also the point and global scale applications.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.