通过外部声场抑制钠硫电池中的穿梭效应和枝晶生长

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qipeng Zhang, Luyu Bo, Hao Li, Liang Shen, Jiali Li, Teng Li, Yunhao Xiao, Zhenhua Tian* and Zheng Li*, 
{"title":"通过外部声场抑制钠硫电池中的穿梭效应和枝晶生长","authors":"Qipeng Zhang,&nbsp;Luyu Bo,&nbsp;Hao Li,&nbsp;Liang Shen,&nbsp;Jiali Li,&nbsp;Teng Li,&nbsp;Yunhao Xiao,&nbsp;Zhenhua Tian* and Zheng Li*,&nbsp;","doi":"10.1021/acs.nanolett.4c0086410.1021/acs.nanolett.4c00864","DOIUrl":null,"url":null,"abstract":"<p >The room-temperature sodium–sulfur (RT Na–S) battery is a promising alternative to traditional lithium-ion batteries owing to its abundant material availability and high specific energy density. However, the sodium polysulfide shuttle effect and dendritic growth pose significant challenges to their practical applications. In this study, we apply diverse disciplinary backgrounds to introduce a novel method to stimulate polarized BaTiO<sub>3</sub> (BTO) nanoparticles on the separator. This approach generates more charges due to the piezoelectric effect under stronger driving forces produced by applying a controllable acoustic field at the outer edge of the cell. The acoustically stimulated BTO attracts more polysulfides, thus reducing the shuttling effect from the cathode to the anode and ultimately enhancing the battery performance. Meanwhile, the acoustic waves create additional streaming flows, improving the uniformity of the sodium ion dispersion, enhancing the sodium ion transport and reducing the possibility of sodium dendrite development. We believe that this work offers a new strategy for the development of high-performance Na–S batteries.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 35","pages":"10711–10717 10711–10717"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c00864","citationCount":"0","resultStr":"{\"title\":\"Inhibiting Shuttle Effect and Dendrite Growth in Sodium–Sulfur Batteries Enabled by Applying External Acoustic Field\",\"authors\":\"Qipeng Zhang,&nbsp;Luyu Bo,&nbsp;Hao Li,&nbsp;Liang Shen,&nbsp;Jiali Li,&nbsp;Teng Li,&nbsp;Yunhao Xiao,&nbsp;Zhenhua Tian* and Zheng Li*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0086410.1021/acs.nanolett.4c00864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The room-temperature sodium–sulfur (RT Na–S) battery is a promising alternative to traditional lithium-ion batteries owing to its abundant material availability and high specific energy density. However, the sodium polysulfide shuttle effect and dendritic growth pose significant challenges to their practical applications. In this study, we apply diverse disciplinary backgrounds to introduce a novel method to stimulate polarized BaTiO<sub>3</sub> (BTO) nanoparticles on the separator. This approach generates more charges due to the piezoelectric effect under stronger driving forces produced by applying a controllable acoustic field at the outer edge of the cell. The acoustically stimulated BTO attracts more polysulfides, thus reducing the shuttling effect from the cathode to the anode and ultimately enhancing the battery performance. Meanwhile, the acoustic waves create additional streaming flows, improving the uniformity of the sodium ion dispersion, enhancing the sodium ion transport and reducing the possibility of sodium dendrite development. We believe that this work offers a new strategy for the development of high-performance Na–S batteries.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 35\",\"pages\":\"10711–10717 10711–10717\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c00864\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c00864\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c00864","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室温钠硫(RT Na-S)电池具有材料丰富、比能量密度高等特点,是一种替代传统锂离子电池的前景广阔的电池。然而,多硫化钠穿梭效应和树枝状生长对其实际应用构成了重大挑战。在本研究中,我们运用不同的学科背景,介绍了一种在隔膜上激发极化 BaTiO3(BTO)纳米粒子的新方法。这种方法通过在电池外缘施加可控声场,在更强的驱动力下产生压电效应,从而产生更多电荷。受声波刺激的 BTO 吸引了更多的多硫化物,从而减少了从阴极到阳极的穿梭效应,最终提高了电池性能。同时,声波还能产生额外的流动,提高钠离子分散的均匀性,增强钠离子的传输,降低钠枝晶形成的可能性。我们相信,这项工作为开发高性能 Na-S 电池提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inhibiting Shuttle Effect and Dendrite Growth in Sodium–Sulfur Batteries Enabled by Applying External Acoustic Field

Inhibiting Shuttle Effect and Dendrite Growth in Sodium–Sulfur Batteries Enabled by Applying External Acoustic Field

The room-temperature sodium–sulfur (RT Na–S) battery is a promising alternative to traditional lithium-ion batteries owing to its abundant material availability and high specific energy density. However, the sodium polysulfide shuttle effect and dendritic growth pose significant challenges to their practical applications. In this study, we apply diverse disciplinary backgrounds to introduce a novel method to stimulate polarized BaTiO3 (BTO) nanoparticles on the separator. This approach generates more charges due to the piezoelectric effect under stronger driving forces produced by applying a controllable acoustic field at the outer edge of the cell. The acoustically stimulated BTO attracts more polysulfides, thus reducing the shuttling effect from the cathode to the anode and ultimately enhancing the battery performance. Meanwhile, the acoustic waves create additional streaming flows, improving the uniformity of the sodium ion dispersion, enhancing the sodium ion transport and reducing the possibility of sodium dendrite development. We believe that this work offers a new strategy for the development of high-performance Na–S batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信