含有苄基哌啶的福莫西汀衍生物:一种针对黄单胞菌属的全新高效抑制剂

Miaohe Zhang, Shuang Feng, Junrong Song, Xianghui Ruan, Wei Xue
{"title":"含有苄基哌啶的福莫西汀衍生物:一种针对黄单胞菌属的全新高效抑制剂","authors":"Miaohe Zhang, Shuang Feng, Junrong Song, Xianghui Ruan, Wei Xue","doi":"10.1016/j.jare.2024.08.039","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Plant bacterial diseases take an incalculable toll on global food security. The indiscriminate use of chemical synthetic pesticide not only facilitates pathogen resistance of pathogenic bacteria, but also poses a major threat to human health and environmental protection. Therefore, it is of great economic value and scientific significance to develop a new antibacterial drug with environmental friendliness and unique mechanism of action.</p><p><strong>Objectives: </strong>To design and synthesize formononetin derivatives based on natural products, evaluate their in vitro and in vivo antibacterial activities and elucidate the mechanisms involved.</p><p><strong>Methods: </strong>The synthesis was carried out by classical active group splicing method. The antibacterial activities were evaluated using turbidimetry and pot experiments. The antibacterial mechanism was further investigated using scanning electron microscopy (SEM), virulence factors, defense enzymes activities, proteomics and metabolomics.</p><p><strong>Results: </strong>40 formononetin derivatives containing benzyl piperidine were designed and synthesized. The antibacterial results demonstrated that H32 exhibited the most potent inhibitory effect against Xanthomonas oryzae pv. Oryzae (Xoo) with the EC<sub>50</sub> of 0.07 μg/mL, while H6 displayed the highest inhibitory activity against Xanthomonas axonopodis pv. Citri (Xac) with the EC<sub>50</sub> of 0.24 μg/mL. Furthermore, the control efficacy of H32 against rice bacterial leaf blight (BLB) and H6 against citrus canker (CC) was validated through pot experiments. SEM, virulence factors and host enzyme activities assay indicated that H32 could not only reduce the virulence of Xoo, but also activate the activities of defense enzymes and improve the disease resistance of host plants. The proteomics and metabolomics analysis demonstrated that H32 could inhibit the synthesis of branched-chain amino acids, make Xoo cells in a starvation state, inhibit its proliferation, weaken its virulence and reduce its colonization and infection of host cells.</p><p><strong>Conclusion: </strong>Formononetin derivatives containing benzyl piperidine could be used as potentially effective inhibitors against Xanthomonas spp.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formononetin derivatives containing benzyl piperidine: A brand new, highly efficient inhibitor targeting Xanthomonas spp.\",\"authors\":\"Miaohe Zhang, Shuang Feng, Junrong Song, Xianghui Ruan, Wei Xue\",\"doi\":\"10.1016/j.jare.2024.08.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Plant bacterial diseases take an incalculable toll on global food security. The indiscriminate use of chemical synthetic pesticide not only facilitates pathogen resistance of pathogenic bacteria, but also poses a major threat to human health and environmental protection. Therefore, it is of great economic value and scientific significance to develop a new antibacterial drug with environmental friendliness and unique mechanism of action.</p><p><strong>Objectives: </strong>To design and synthesize formononetin derivatives based on natural products, evaluate their in vitro and in vivo antibacterial activities and elucidate the mechanisms involved.</p><p><strong>Methods: </strong>The synthesis was carried out by classical active group splicing method. The antibacterial activities were evaluated using turbidimetry and pot experiments. The antibacterial mechanism was further investigated using scanning electron microscopy (SEM), virulence factors, defense enzymes activities, proteomics and metabolomics.</p><p><strong>Results: </strong>40 formononetin derivatives containing benzyl piperidine were designed and synthesized. The antibacterial results demonstrated that H32 exhibited the most potent inhibitory effect against Xanthomonas oryzae pv. Oryzae (Xoo) with the EC<sub>50</sub> of 0.07 μg/mL, while H6 displayed the highest inhibitory activity against Xanthomonas axonopodis pv. Citri (Xac) with the EC<sub>50</sub> of 0.24 μg/mL. Furthermore, the control efficacy of H32 against rice bacterial leaf blight (BLB) and H6 against citrus canker (CC) was validated through pot experiments. SEM, virulence factors and host enzyme activities assay indicated that H32 could not only reduce the virulence of Xoo, but also activate the activities of defense enzymes and improve the disease resistance of host plants. The proteomics and metabolomics analysis demonstrated that H32 could inhibit the synthesis of branched-chain amino acids, make Xoo cells in a starvation state, inhibit its proliferation, weaken its virulence and reduce its colonization and infection of host cells.</p><p><strong>Conclusion: </strong>Formononetin derivatives containing benzyl piperidine could be used as potentially effective inhibitors against Xanthomonas spp.</p>\",\"PeriodicalId\":94063,\"journal\":{\"name\":\"Journal of advanced research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of advanced research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.08.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.08.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:植物细菌性病害给全球粮食安全造成了不可估量的损失。化学合成杀虫剂的滥用不仅助长了病原菌的抗药性,而且对人类健康和环境保护构成了重大威胁。因此,开发一种环境友好、作用机制独特的新型抗菌药物具有重要的经济价值和科学意义:设计并合成基于天然产物的甲萘素衍生物,评估其体内外抗菌活性,并阐明其作用机制:方法:采用经典的活性基团拼接法进行合成。方法:采用经典的活性基团拼接法进行合成。利用扫描电子显微镜(SEM)、毒力因子、防御酶活性、蛋白质组学和代谢组学进一步研究了抗菌机制:设计并合成了 40 种含有苄基哌啶的甲萘素衍生物。抗菌结果表明,H32对黄单胞菌(Xanthomonas oryzae pv. Oryzae,Xoo)的抑制效果最强,EC50为0.07 μg/mL;H6对黄单胞菌(Xanthomonas axonopodis pv. Citri,Xac)的抑制活性最高,EC50为0.24 μg/mL。此外,通过盆栽实验还验证了 H32 对水稻细菌性叶枯病(BLB)和 H6 对柑橘腐烂病(CC)的防治效果。扫描电镜、毒力因子和寄主酶活性测定表明,H32不仅能降低Xoo的毒力,还能激活防御酶的活性,提高寄主植物的抗病性。蛋白质组学和代谢组学分析表明,H32 能抑制支链氨基酸的合成,使 Xoo 细胞处于饥饿状态,抑制其增殖,削弱其毒力,减少其对寄主细胞的定殖和感染:结论:含有苄基哌啶的福莫尼丁衍生物可作为黄单胞菌属的潜在有效抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formononetin derivatives containing benzyl piperidine: A brand new, highly efficient inhibitor targeting Xanthomonas spp.

Introduction: Plant bacterial diseases take an incalculable toll on global food security. The indiscriminate use of chemical synthetic pesticide not only facilitates pathogen resistance of pathogenic bacteria, but also poses a major threat to human health and environmental protection. Therefore, it is of great economic value and scientific significance to develop a new antibacterial drug with environmental friendliness and unique mechanism of action.

Objectives: To design and synthesize formononetin derivatives based on natural products, evaluate their in vitro and in vivo antibacterial activities and elucidate the mechanisms involved.

Methods: The synthesis was carried out by classical active group splicing method. The antibacterial activities were evaluated using turbidimetry and pot experiments. The antibacterial mechanism was further investigated using scanning electron microscopy (SEM), virulence factors, defense enzymes activities, proteomics and metabolomics.

Results: 40 formononetin derivatives containing benzyl piperidine were designed and synthesized. The antibacterial results demonstrated that H32 exhibited the most potent inhibitory effect against Xanthomonas oryzae pv. Oryzae (Xoo) with the EC50 of 0.07 μg/mL, while H6 displayed the highest inhibitory activity against Xanthomonas axonopodis pv. Citri (Xac) with the EC50 of 0.24 μg/mL. Furthermore, the control efficacy of H32 against rice bacterial leaf blight (BLB) and H6 against citrus canker (CC) was validated through pot experiments. SEM, virulence factors and host enzyme activities assay indicated that H32 could not only reduce the virulence of Xoo, but also activate the activities of defense enzymes and improve the disease resistance of host plants. The proteomics and metabolomics analysis demonstrated that H32 could inhibit the synthesis of branched-chain amino acids, make Xoo cells in a starvation state, inhibit its proliferation, weaken its virulence and reduce its colonization and infection of host cells.

Conclusion: Formononetin derivatives containing benzyl piperidine could be used as potentially effective inhibitors against Xanthomonas spp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信