用于光热将 CH4 转化为 HCHO 并进行治疗的等离子 Pd-Sb 纳米片。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mengjun Wang, Jun Jia, Zhaodong Meng, Jing Xia, Xinyan Hu, Fei Xue, Huiping Peng, Xiangmin Meng, Jun Yi, Xiaolan Chen, Jun Li, Yuzheng Guo, Yong Xu, Xiaoqing Huang
{"title":"用于光热将 CH4 转化为 HCHO 并进行治疗的等离子 Pd-Sb 纳米片。","authors":"Mengjun Wang,&nbsp;Jun Jia,&nbsp;Zhaodong Meng,&nbsp;Jing Xia,&nbsp;Xinyan Hu,&nbsp;Fei Xue,&nbsp;Huiping Peng,&nbsp;Xiangmin Meng,&nbsp;Jun Yi,&nbsp;Xiaolan Chen,&nbsp;Jun Li,&nbsp;Yuzheng Guo,&nbsp;Yong Xu,&nbsp;Xiaoqing Huang","doi":"10.1126/sciadv.ado9664","DOIUrl":null,"url":null,"abstract":"<div >Photothermal catalysis effectively increases catalytic activity by using the photothermal effect of metal nanomaterials; however, the combination of strong light absorption and high catalytic performance remains a challenge. Here, we demonstrate hexagonal ~5-nanometer-thick palladium antimony (chemical formula as Pd<sub>8</sub>Sb<sub>3</sub>) nanosheets (NSs) that exhibit strong light absorption within full spectral and localized surface plasmon resonance (LSPR) effects in the visible region. Such LSPR features lead to strong photothermal effects, and Pd<sub>8</sub>Sb<sub>3</sub> NSs aqueous dispersion enables enhanced photothermal methane (CH<sub>4</sub>) conversion to formaldehyde (HCHO) under full-spectrum light irradiation at 1.7 watts per square centimeter, leading to selectivity of ~98.7%, productivity of ~665 millimoles per gram of catalyst, ~700 times higher than that of Pd NSs. Mechanism investigations suggest that different radicals were generated on Pd<sub>8</sub>Sb<sub>3</sub> (·OH) and Pd NSs (·O<sub>2</sub><sup>−</sup>), where Pd<sub>8</sub>Sb<sub>3</sub> NSs displays stronger adsorption strength to CH<sub>4</sub> and facilitates CH<sub>4</sub> oxidation to HCHO. Besides, the strong light absorption ability of Pd<sub>8</sub>Sb<sub>3</sub> NSs enables photothermal therapy for breast cancer.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado9664","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Pd-Sb nanosheets for photothermal CH4 conversion to HCHO and therapy\",\"authors\":\"Mengjun Wang,&nbsp;Jun Jia,&nbsp;Zhaodong Meng,&nbsp;Jing Xia,&nbsp;Xinyan Hu,&nbsp;Fei Xue,&nbsp;Huiping Peng,&nbsp;Xiangmin Meng,&nbsp;Jun Yi,&nbsp;Xiaolan Chen,&nbsp;Jun Li,&nbsp;Yuzheng Guo,&nbsp;Yong Xu,&nbsp;Xiaoqing Huang\",\"doi\":\"10.1126/sciadv.ado9664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Photothermal catalysis effectively increases catalytic activity by using the photothermal effect of metal nanomaterials; however, the combination of strong light absorption and high catalytic performance remains a challenge. Here, we demonstrate hexagonal ~5-nanometer-thick palladium antimony (chemical formula as Pd<sub>8</sub>Sb<sub>3</sub>) nanosheets (NSs) that exhibit strong light absorption within full spectral and localized surface plasmon resonance (LSPR) effects in the visible region. Such LSPR features lead to strong photothermal effects, and Pd<sub>8</sub>Sb<sub>3</sub> NSs aqueous dispersion enables enhanced photothermal methane (CH<sub>4</sub>) conversion to formaldehyde (HCHO) under full-spectrum light irradiation at 1.7 watts per square centimeter, leading to selectivity of ~98.7%, productivity of ~665 millimoles per gram of catalyst, ~700 times higher than that of Pd NSs. Mechanism investigations suggest that different radicals were generated on Pd<sub>8</sub>Sb<sub>3</sub> (·OH) and Pd NSs (·O<sub>2</sub><sup>−</sup>), where Pd<sub>8</sub>Sb<sub>3</sub> NSs displays stronger adsorption strength to CH<sub>4</sub> and facilitates CH<sub>4</sub> oxidation to HCHO. Besides, the strong light absorption ability of Pd<sub>8</sub>Sb<sub>3</sub> NSs enables photothermal therapy for breast cancer.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ado9664\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ado9664\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado9664","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光热催化利用金属纳米材料的光热效应有效地提高了催化活性;然而,如何将强光吸收和高催化性能结合起来仍然是一个挑战。在这里,我们展示了六角形约 5 纳米厚的钯锑纳米片(化学式为 Pd8Sb3),这种纳米片在可见光区域的全光谱和局部表面等离子体共振(LSPR)效应范围内表现出很强的光吸收能力。在 1.7 瓦/平方厘米的全光谱光照射下,Pd8Sb3 NSs 的水分散体能够增强甲烷(CH4)向甲醛(HCHO)的光热转化,使选择性达到约 98.7%,每克催化剂的生产率达到约 665 毫摩尔,是 Pd NSs 的约 700 倍。机理研究表明,Pd8Sb3(-OH)和 Pd NSs(-O2-)上产生了不同的自由基,其中 Pd8Sb3 NSs 对 CH4 具有更强的吸附力,可促进 CH4 氧化为 HCHO。此外,Pd8Sb3 NSs 具有很强的光吸收能力,可用于乳腺癌的光热治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmonic Pd-Sb nanosheets for photothermal CH4 conversion to HCHO and therapy

Plasmonic Pd-Sb nanosheets for photothermal CH4 conversion to HCHO and therapy
Photothermal catalysis effectively increases catalytic activity by using the photothermal effect of metal nanomaterials; however, the combination of strong light absorption and high catalytic performance remains a challenge. Here, we demonstrate hexagonal ~5-nanometer-thick palladium antimony (chemical formula as Pd8Sb3) nanosheets (NSs) that exhibit strong light absorption within full spectral and localized surface plasmon resonance (LSPR) effects in the visible region. Such LSPR features lead to strong photothermal effects, and Pd8Sb3 NSs aqueous dispersion enables enhanced photothermal methane (CH4) conversion to formaldehyde (HCHO) under full-spectrum light irradiation at 1.7 watts per square centimeter, leading to selectivity of ~98.7%, productivity of ~665 millimoles per gram of catalyst, ~700 times higher than that of Pd NSs. Mechanism investigations suggest that different radicals were generated on Pd8Sb3 (·OH) and Pd NSs (·O2), where Pd8Sb3 NSs displays stronger adsorption strength to CH4 and facilitates CH4 oxidation to HCHO. Besides, the strong light absorption ability of Pd8Sb3 NSs enables photothermal therapy for breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信