绞股蓝内酯受体 DWARF14 调节拟南芥的开花时间。

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2024-09-05 DOI:10.1093/plcell/koae248
Jinrui Bai, Xi Lei, Jinlan Liu, Yi Huang, Lumei Bi, Yuehua Wang, Jindong Li, Haiyang Yu, Shixiang Yao, Li Chen, Bart J Janssen, Kimberley C Snowden, Meng Zhang, Ruifeng Yao
{"title":"绞股蓝内酯受体 DWARF14 调节拟南芥的开花时间。","authors":"Jinrui Bai, Xi Lei, Jinlan Liu, Yi Huang, Lumei Bi, Yuehua Wang, Jindong Li, Haiyang Yu, Shixiang Yao, Li Chen, Bart J Janssen, Kimberley C Snowden, Meng Zhang, Ruifeng Yao","doi":"10.1093/plcell/koae248","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis.\",\"authors\":\"Jinrui Bai, Xi Lei, Jinlan Liu, Yi Huang, Lumei Bi, Yuehua Wang, Jindong Li, Haiyang Yu, Shixiang Yao, Li Chen, Bart J Janssen, Kimberley C Snowden, Meng Zhang, Ruifeng Yao\",\"doi\":\"10.1093/plcell/koae248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae248\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae248","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

包括绞股蓝内酯(SL)在内的多种植物激素在调节花期方面发挥着关键作用。拟南芥(Arabidopsis thaliana)的 DWARF14(AtD14)受体感知 SL,并招募 F-box 蛋白 MORE AXILLARY GROWTH2(MAX2)和 MAX2-LIKE 抑制剂(SMXL)家族蛋白。这些相互作用导致 SMXL 抑制蛋白降解,从而调节嫩枝分枝、叶片形状和其他发育过程。然而,SL调控植物开花的分子机制仍未确定。在这里,我们证明了完整的绞股蓝内酯生物合成和信号传导途径对于拟南芥正常开花至关重要。SL生物合成(max3)和信号传导(Atd14和max2)途径的功能缺失突变体会提前开花,而抑制剂三重突变体smxl6/7/8(s678)则表现出相反的表型。AtD14 保留在细胞质中导致其无法抑制开花。此外,我们还发现核定位的 AtD14 采用了双重策略来增强 AP2 转录因子 TARGET OF EAT1(TOE1)的功能。AtD14 以 SL 依赖性方式直接与 TOE1 结合并使其稳定。此外,AtD14 介导的 SMXL7 降解可将 TOE1 从抑制蛋白中释放出来,使其能够结合并抑制花序定位 T(FT)启动子。这导致 FT 转录减少和开花延迟。总之,AtD14 对 SL 的感知使转录因子 TOE1 能够抑制开花,为植物开花的激素控制提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis.

Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信