微胶囊机械性能的调节及其应用。

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"微胶囊机械性能的调节及其应用。","authors":"","doi":"10.1016/j.jconrel.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of mechanical properties of microcapsules and their applications\",\"authors\":\"\",\"doi\":\"10.1016/j.jconrel.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.</p></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365924006035\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365924006035","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

封装有效载荷的微胶囊是最有前途的输送方法之一。微胶囊的机械特性往往决定了其应用场景。例如,机械强度低的微胶囊因其出色的生物相容性、柔软性和可变形性而被更广泛地应用于生物医学领域。相比之下,机械强度高的微胶囊通常会混入基质中,以增强材料的强度。因此,表征和调节微胶囊的机械性能对其设计优化至关重要。本文首先概述了微胶囊力学性能表征的四种方法:纳米压痕技术、平行板压缩技术、微毛细管技术和流动变形技术。随后,讨论了微胶囊机械性能的调节机制,以及不同软硬程度的微胶囊在食品、纺织品和药品配方中的应用进展。这些调节机制主要包括改变尺寸和形态、引入牺牲键和构建混合壳。最后,我们展望了具有可调机械特性的微胶囊的未来应用和研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulation of mechanical properties of microcapsules and their applications

Regulation of mechanical properties of microcapsules and their applications

Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信