打破门槛:利用计算机辅助胸部 X 光分析建立多变量模型,用于结核病分诊。

IF 4.8 2区 医学 Q1 INFECTIOUS DISEASES
Coralie Geric , Gamuchirai Tavaziva , Marianne Breuninger , Keertan Dheda , Ali Esmail , Alex Scott , Mary Kagujje , Monde Muyoyeta , Klaus Reither , Aamir J. Khan , Andrea Benedetti , Faiz Ahmad Khan
{"title":"打破门槛:利用计算机辅助胸部 X 光分析建立多变量模型,用于结核病分诊。","authors":"Coralie Geric ,&nbsp;Gamuchirai Tavaziva ,&nbsp;Marianne Breuninger ,&nbsp;Keertan Dheda ,&nbsp;Ali Esmail ,&nbsp;Alex Scott ,&nbsp;Mary Kagujje ,&nbsp;Monde Muyoyeta ,&nbsp;Klaus Reither ,&nbsp;Aamir J. Khan ,&nbsp;Andrea Benedetti ,&nbsp;Faiz Ahmad Khan","doi":"10.1016/j.ijid.2024.107221","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Computer-aided detection (CAD) software packages quantify tuberculosis (TB)-compatible chest X-ray (CXR) abnormality as continuous scores. In practice, a threshold value is selected for binary CXR classification. We assessed the diagnostic accuracy of an alternative approach to applying CAD for TB triage: incorporating CAD scores in multivariable modeling.</p></div><div><h3>Methods</h3><p>We pooled individual patient data from four studies. Separately, for two commercial CAD, we used logistic regression to model microbiologically confirmed TB. Models included CAD score, study site, age, sex, human immunodeficiency virus status, and prior TB. We compared specificity at target sensitivities ≥90% between the multivariable model and the current threshold-based approach for CAD use.</p></div><div><h3>Results</h3><p>We included 4,733/5,640 (84%) participants with complete covariate data (median age 36 years; 45% female; 22% with prior TB; 22% people living with human immunodeficiency virus). A total of 805 (17%) had TB. Multivariable models demonstrated excellent performance (areas under the receiver operating characteristic curve [95% confidence interval]: software A, 0.91 [0.90-0.93]; software B, 0.92 [0.91-0.93]). Compared with threshold scores, multivariable models increased specificity (e.g., at 90% sensitivity, threshold vs model specificity [95% confidence interval]: software A, 71% [68-74%] vs 75% [74-77%]; software B, 69% [63-75%] vs 75% [74-77%]).</p></div><div><h3>Conclusion</h3><p>Using CAD scores in multivariable models outperformed the current practice of CAD-threshold-based CXR classification for TB diagnosis.</p></div>","PeriodicalId":14006,"journal":{"name":"International Journal of Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1201971224002923/pdfft?md5=9c233dbc9cf6988a43b0f35dee5ce2ec&pid=1-s2.0-S1201971224002923-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Breaking the threshold: Developing multivariable models using computer-aided chest X-ray analysis for tuberculosis triage\",\"authors\":\"Coralie Geric ,&nbsp;Gamuchirai Tavaziva ,&nbsp;Marianne Breuninger ,&nbsp;Keertan Dheda ,&nbsp;Ali Esmail ,&nbsp;Alex Scott ,&nbsp;Mary Kagujje ,&nbsp;Monde Muyoyeta ,&nbsp;Klaus Reither ,&nbsp;Aamir J. Khan ,&nbsp;Andrea Benedetti ,&nbsp;Faiz Ahmad Khan\",\"doi\":\"10.1016/j.ijid.2024.107221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Computer-aided detection (CAD) software packages quantify tuberculosis (TB)-compatible chest X-ray (CXR) abnormality as continuous scores. In practice, a threshold value is selected for binary CXR classification. We assessed the diagnostic accuracy of an alternative approach to applying CAD for TB triage: incorporating CAD scores in multivariable modeling.</p></div><div><h3>Methods</h3><p>We pooled individual patient data from four studies. Separately, for two commercial CAD, we used logistic regression to model microbiologically confirmed TB. Models included CAD score, study site, age, sex, human immunodeficiency virus status, and prior TB. We compared specificity at target sensitivities ≥90% between the multivariable model and the current threshold-based approach for CAD use.</p></div><div><h3>Results</h3><p>We included 4,733/5,640 (84%) participants with complete covariate data (median age 36 years; 45% female; 22% with prior TB; 22% people living with human immunodeficiency virus). A total of 805 (17%) had TB. Multivariable models demonstrated excellent performance (areas under the receiver operating characteristic curve [95% confidence interval]: software A, 0.91 [0.90-0.93]; software B, 0.92 [0.91-0.93]). Compared with threshold scores, multivariable models increased specificity (e.g., at 90% sensitivity, threshold vs model specificity [95% confidence interval]: software A, 71% [68-74%] vs 75% [74-77%]; software B, 69% [63-75%] vs 75% [74-77%]).</p></div><div><h3>Conclusion</h3><p>Using CAD scores in multivariable models outperformed the current practice of CAD-threshold-based CXR classification for TB diagnosis.</p></div>\",\"PeriodicalId\":14006,\"journal\":{\"name\":\"International Journal of Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1201971224002923/pdfft?md5=9c233dbc9cf6988a43b0f35dee5ce2ec&pid=1-s2.0-S1201971224002923-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1201971224002923\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1201971224002923","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

背景:计算机辅助检测(CAD)软件包将与肺结核相关的胸部 X 光(CXR)异常量化为连续分数。在实践中,二元 CXR 分类会选择一个阈值。我们评估了应用 CAD 进行肺结核分诊的另一种方法的诊断准确性:将 CAD 评分纳入多变量建模:我们汇总了四项研究中的患者个体数据。对于两项商业 CAD,我们分别使用逻辑回归法对微生物确诊的结核病进行建模。模型包括 CAD 评分、研究地点、年龄、性别、HIV 感染状况和既往结核病史。我们比较了多变量模型和目前基于阈值的 CAD 使用方法在目标灵敏度≥90% 时的特异性:我们纳入了 4733/5640 名(84%)具有完整协变量数据的参与者(中位年龄 36 岁;45% 为女性;22% 曾患肺结核;22% 为 HIV 感染者)。共有 805 人(17%)患有结核病。多变量模型表现优异(接收者工作特征曲线下的面积 (95%CI):软件 A,0.91 (0.90-0.93);软件 B,0.92 (0.91-0.93))。与阈值评分相比,多变量模型提高了特异性(例如,在灵敏度为 90% 的情况下,阈值与模型的特异性(95%CI):软件 A,71%(68%-74%) vs. 75%(74%-77%);软件 B,69%(63%-75%) vs. 75%(74%-77%)):结论:在多变量模型中使用 CAD 评分的效果优于目前基于 CAD 阈值的 CXR 诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking the threshold: Developing multivariable models using computer-aided chest X-ray analysis for tuberculosis triage

Objectives

Computer-aided detection (CAD) software packages quantify tuberculosis (TB)-compatible chest X-ray (CXR) abnormality as continuous scores. In practice, a threshold value is selected for binary CXR classification. We assessed the diagnostic accuracy of an alternative approach to applying CAD for TB triage: incorporating CAD scores in multivariable modeling.

Methods

We pooled individual patient data from four studies. Separately, for two commercial CAD, we used logistic regression to model microbiologically confirmed TB. Models included CAD score, study site, age, sex, human immunodeficiency virus status, and prior TB. We compared specificity at target sensitivities ≥90% between the multivariable model and the current threshold-based approach for CAD use.

Results

We included 4,733/5,640 (84%) participants with complete covariate data (median age 36 years; 45% female; 22% with prior TB; 22% people living with human immunodeficiency virus). A total of 805 (17%) had TB. Multivariable models demonstrated excellent performance (areas under the receiver operating characteristic curve [95% confidence interval]: software A, 0.91 [0.90-0.93]; software B, 0.92 [0.91-0.93]). Compared with threshold scores, multivariable models increased specificity (e.g., at 90% sensitivity, threshold vs model specificity [95% confidence interval]: software A, 71% [68-74%] vs 75% [74-77%]; software B, 69% [63-75%] vs 75% [74-77%]).

Conclusion

Using CAD scores in multivariable models outperformed the current practice of CAD-threshold-based CXR classification for TB diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.90
自引率
2.40%
发文量
1020
审稿时长
30 days
期刊介绍: International Journal of Infectious Diseases (IJID) Publisher: International Society for Infectious Diseases Publication Frequency: Monthly Type: Peer-reviewed, Open Access Scope: Publishes original clinical and laboratory-based research. Reports clinical trials, reviews, and some case reports. Focuses on epidemiology, clinical diagnosis, treatment, and control of infectious diseases. Emphasizes diseases common in under-resourced countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信