{"title":"利用机器学习通过计算机断层扫描衍生斑块测量和临床参数预测长期重大心脏不良事件。","authors":"Shinichi Wada, Makino Sakuraba, Michikazu Nakai, Takayuki Suzuki, Yoshihiro Miyamoto, Teruo Noguchi, Yoshitaka Iwanaga","doi":"10.2169/internalmedicine.3566-24","DOIUrl":null,"url":null,"abstract":"<p><p>Objective The present study evaluated the usefulness of machine learning (ML) models with the coronary computed tomography imaging and clinical parameters for predicting major adverse cardiac events (MACEs). Methods The Nationwide Gender-specific Atherosclerosis Determinants Estimation and Ischemic Cardiovascular Disease Prospective Cohort study (NADESICO) of 1,187 patients with suspected coronary artery disease 50-74 years old was used to build a MACE prediction model. The ML random forest (RF) model was compared with a logistic regression analysis. The performance of the ML model was evaluated using the area under the curve (AUC) with the 95% confidence interval (CI). Results Among 1,178 patients from the NADESICO dataset, MACEs occurred in 103 (8.7%) patients during a median follow-up of 4.4 years. The AUC of the RF model for MACE prediction was 0.781 (95% CI: 0.670-0.870), which was significantly higher than that of the conventional logistic regression model [AUC, 0.750 (95% CI: 0.651-0.839)]. The important features in the RF model were coronary artery stenosis (CAS) at any site, CAS in the left anterior descending branch, HbA1c level, CAS in the right coronary artery, and sex. In the external validation cohort, the model accuracy of ensemble ML-RF models that were trained on and tuned using the NADESICO dataset was not similar [AUC: 0.635 (95% CI: 0.599-0.672)]. Conclusion The ML-RF model improved the long-term prediction of MACEs compared to the logistic regression model. However, the selected variables in the internal dataset were not highly predictive of the external dataset. Further investigations are required to validate the usefulness of this model.</p>","PeriodicalId":13719,"journal":{"name":"Internal Medicine","volume":" ","pages":"1001-1008"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term Major Adverse Cardiac Event Prediction by Computed Tomography-derived Plaque Measures and Clinical Parameters Using Machine Learning.\",\"authors\":\"Shinichi Wada, Makino Sakuraba, Michikazu Nakai, Takayuki Suzuki, Yoshihiro Miyamoto, Teruo Noguchi, Yoshitaka Iwanaga\",\"doi\":\"10.2169/internalmedicine.3566-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Objective The present study evaluated the usefulness of machine learning (ML) models with the coronary computed tomography imaging and clinical parameters for predicting major adverse cardiac events (MACEs). Methods The Nationwide Gender-specific Atherosclerosis Determinants Estimation and Ischemic Cardiovascular Disease Prospective Cohort study (NADESICO) of 1,187 patients with suspected coronary artery disease 50-74 years old was used to build a MACE prediction model. The ML random forest (RF) model was compared with a logistic regression analysis. The performance of the ML model was evaluated using the area under the curve (AUC) with the 95% confidence interval (CI). Results Among 1,178 patients from the NADESICO dataset, MACEs occurred in 103 (8.7%) patients during a median follow-up of 4.4 years. The AUC of the RF model for MACE prediction was 0.781 (95% CI: 0.670-0.870), which was significantly higher than that of the conventional logistic regression model [AUC, 0.750 (95% CI: 0.651-0.839)]. The important features in the RF model were coronary artery stenosis (CAS) at any site, CAS in the left anterior descending branch, HbA1c level, CAS in the right coronary artery, and sex. In the external validation cohort, the model accuracy of ensemble ML-RF models that were trained on and tuned using the NADESICO dataset was not similar [AUC: 0.635 (95% CI: 0.599-0.672)]. Conclusion The ML-RF model improved the long-term prediction of MACEs compared to the logistic regression model. However, the selected variables in the internal dataset were not highly predictive of the external dataset. Further investigations are required to validate the usefulness of this model.</p>\",\"PeriodicalId\":13719,\"journal\":{\"name\":\"Internal Medicine\",\"volume\":\" \",\"pages\":\"1001-1008\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2169/internalmedicine.3566-24\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2169/internalmedicine.3566-24","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Long-term Major Adverse Cardiac Event Prediction by Computed Tomography-derived Plaque Measures and Clinical Parameters Using Machine Learning.
Objective The present study evaluated the usefulness of machine learning (ML) models with the coronary computed tomography imaging and clinical parameters for predicting major adverse cardiac events (MACEs). Methods The Nationwide Gender-specific Atherosclerosis Determinants Estimation and Ischemic Cardiovascular Disease Prospective Cohort study (NADESICO) of 1,187 patients with suspected coronary artery disease 50-74 years old was used to build a MACE prediction model. The ML random forest (RF) model was compared with a logistic regression analysis. The performance of the ML model was evaluated using the area under the curve (AUC) with the 95% confidence interval (CI). Results Among 1,178 patients from the NADESICO dataset, MACEs occurred in 103 (8.7%) patients during a median follow-up of 4.4 years. The AUC of the RF model for MACE prediction was 0.781 (95% CI: 0.670-0.870), which was significantly higher than that of the conventional logistic regression model [AUC, 0.750 (95% CI: 0.651-0.839)]. The important features in the RF model were coronary artery stenosis (CAS) at any site, CAS in the left anterior descending branch, HbA1c level, CAS in the right coronary artery, and sex. In the external validation cohort, the model accuracy of ensemble ML-RF models that were trained on and tuned using the NADESICO dataset was not similar [AUC: 0.635 (95% CI: 0.599-0.672)]. Conclusion The ML-RF model improved the long-term prediction of MACEs compared to the logistic regression model. However, the selected variables in the internal dataset were not highly predictive of the external dataset. Further investigations are required to validate the usefulness of this model.
期刊介绍:
Internal Medicine is an open-access online only journal published monthly by the Japanese Society of Internal Medicine.
Articles must be prepared in accordance with "The Uniform Requirements for Manuscripts Submitted to Biomedical Journals (see Annals of Internal Medicine 108: 258-265, 1988), must be contributed solely to the Internal Medicine, and become the property of the Japanese Society of Internal Medicine. Statements contained therein are the responsibility of the author(s). The Society reserves copyright and renewal on all published material and such material may not be reproduced in any form without the written permission of the Society.