Preeti Maurya, Mohit Kumar, Ravi Jain, Haider Thaer Abdulhameed Almuqdadi, Harshita Singh, Aashima Gupta, Christoph Arenz, Naseem A Gaur, Shailja Singh
{"title":"疟原虫主要促进剂超家族蛋白在转运体中的表达 - Δ念珠菌确定了一种药物转运体。","authors":"Preeti Maurya, Mohit Kumar, Ravi Jain, Haider Thaer Abdulhameed Almuqdadi, Harshita Singh, Aashima Gupta, Christoph Arenz, Naseem A Gaur, Shailja Singh","doi":"10.1080/17460913.2024.2389750","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; '<i>Pf</i>MFSDT') as a drug transporter, using <i>Candida glabrata</i> for orthologous protein expression.<b>Methods:</b> Complementary Determining Sequence encoding <i>Pf</i>MFSDT was integrated into the genome of genetically engineered <i>C. glabrata</i> strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.<b>Results & conclusion:</b> The modified <i>C. glabrata</i> strain exhibited plasma membrane localization of <i>Pf</i>MFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of <i>Plasmodium falciparum</i> highlight their antimalarial properties. This study proposes <i>Pf</i>MFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"1293-1307"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression of <i>Plasmodium</i> major facilitator superfamily protein in transporters - Δ <i>Candida</i> identifies a drug transporter.\",\"authors\":\"Preeti Maurya, Mohit Kumar, Ravi Jain, Haider Thaer Abdulhameed Almuqdadi, Harshita Singh, Aashima Gupta, Christoph Arenz, Naseem A Gaur, Shailja Singh\",\"doi\":\"10.1080/17460913.2024.2389750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; '<i>Pf</i>MFSDT') as a drug transporter, using <i>Candida glabrata</i> for orthologous protein expression.<b>Methods:</b> Complementary Determining Sequence encoding <i>Pf</i>MFSDT was integrated into the genome of genetically engineered <i>C. glabrata</i> strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.<b>Results & conclusion:</b> The modified <i>C. glabrata</i> strain exhibited plasma membrane localization of <i>Pf</i>MFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of <i>Plasmodium falciparum</i> highlight their antimalarial properties. This study proposes <i>Pf</i>MFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.</p>\",\"PeriodicalId\":12773,\"journal\":{\"name\":\"Future microbiology\",\"volume\":\" \",\"pages\":\"1293-1307\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17460913.2024.2389750\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2024.2389750","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Expression of Plasmodium major facilitator superfamily protein in transporters - Δ Candida identifies a drug transporter.
Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.