热敏喷墨技术使无标签单细胞蛋白质组学变得容易和方便。

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2024-08-21 eCollection Date: 2024-01-01 DOI:10.3389/fchem.2024.1428547
Stanislau Stanisheuski, Arpa Ebrahimi, Kavi Aashish Vaidya, Hyo Sang Jang, Liping Yang, Alex Jordan Eddins, Carrie Marean-Reardon, Maria Clara Franco, Claudia Susanne Maier
{"title":"热敏喷墨技术使无标签单细胞蛋白质组学变得容易和方便。","authors":"Stanislau Stanisheuski, Arpa Ebrahimi, Kavi Aashish Vaidya, Hyo Sang Jang, Liping Yang, Alex Jordan Eddins, Carrie Marean-Reardon, Maria Clara Franco, Claudia Susanne Maier","doi":"10.3389/fchem.2024.1428547","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermal inkjet makes label-free single-cell proteomics accessible and easy.\",\"authors\":\"Stanislau Stanisheuski, Arpa Ebrahimi, Kavi Aashish Vaidya, Hyo Sang Jang, Liping Yang, Alex Jordan Eddins, Carrie Marean-Reardon, Maria Clara Franco, Claudia Susanne Maier\",\"doi\":\"10.3389/fchem.2024.1428547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2024.1428547\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1428547","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们改装了 HP D100 单细胞分装仪--一种新型的低成本热喷墨 (TIJ) 平台,具有基于阻抗的单细胞检测功能--用于分装单个细胞和单锅样品制备。我们使用与 Acquity UPLC M 级系统或 Vanquish Neo UHPLC 系统相连的 Orbitrap Fusion Lumos 质谱仪,在一次运行中反复实现了对单个细胞中多达 1,300 种蛋白质的无标记鉴定。所开发的样品处理工作流程重现性高、稳健,适用于标准的 384 孔和 1536 孔微孔板以及玻璃液相色谱瓶。我们展示了该方法在多个细胞系单细胞、混合细胞悬浮液和胶质母细胞瘤肿瘤球体蛋白质组学中的适用性。作为稳健性的额外证明,我们还监测了基因操作的结果以及工程蛋白在单个细胞中的表达。我们的单细胞蛋白质组学工作流程具有成本效益和稳健性,可以转让给有兴趣在单个细胞水平研究细胞的其他实验室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal inkjet makes label-free single-cell proteomics accessible and easy.

In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信