地塞米松诱导基质对 TM 转录组的影响

IF 3 2区 医学 Q1 OPHTHALMOLOGY
Keerti Soundappan , Jingwen Cai , Hongfang Yu , Kamesh Dhamodaran , Hasna Baidouri , Janice A. Vranka , Hongyan Xu , Vijaykrishna Raghunathan , Yutao Liu
{"title":"地塞米松诱导基质对 TM 转录组的影响","authors":"Keerti Soundappan ,&nbsp;Jingwen Cai ,&nbsp;Hongfang Yu ,&nbsp;Kamesh Dhamodaran ,&nbsp;Hasna Baidouri ,&nbsp;Janice A. Vranka ,&nbsp;Hongyan Xu ,&nbsp;Vijaykrishna Raghunathan ,&nbsp;Yutao Liu","doi":"10.1016/j.exer.2024.110069","DOIUrl":null,"url":null,"abstract":"<div><p>Pathologic bidirectional interactions between the extracellular matrix (ECM) and cells within the human trabecular meshwork (hTM) contribute to ocular hypertension. An <em>in vitro</em> model is needed to study these cell-matrix interactions and their effect on outflow homeostasis. This study aimed to determine whether pathogenic ECM derived from dexamethasone (DEX)-treated hTM cultures induces clinically relevant glaucoma-like changes in healthy hTM cells at the transcriptional level. Corneoscleral rims from non-glaucoma donors were used to isolate primary hTM cells after validation according to the consensus recommendations for TM culture. Normal hTM cells (n = 5) were plated on a coverslip and treated with 100 nM DEX or ethanol for four weeks. These cultures were then decellularized, plated with primary hTM cells, and allowed to grow for another 72 h. RNA was extracted from these hTM cells for stranded total RNA-Seq. Sequencing libraries prepared using the Zymo-Seq RiboFree Total RNA library kit were pooled and sequenced using Illumina NovaSeq 6000. After quality control, sequence reads were aligned to the human genome build hg19. Differential expression (DE) analyses were performed using paired multi-factorial ANOVA. The expression of several DE genes associated with glaucoma (<em>ANGPTL2, PDE7B, C22orf23, COL4A1, ADAM12, IFT122, SEMA6C</em>) was validated using EvaGreen-based Droplet Digital PCR (ddPCR) assays. Gene ontology analyses of the DE genes were performed using the PANTHER and NDEx IQA databases, and functional analyses were performed with the DAVID Bioinformatics software. Using a cutoff of p-value &lt;0.05 and fold change ≥2.0, our differential analysis identified 267 up- and 135 down-regulated genes in DEX-induced ECM-treated cells compared to the control. These differentially expressed genes were found to play a significant role in pathways such as cytokine and oxidative stress-induced inflammation, integrin signaling, matrix remodeling, and angiogenesis. These findings were further supported by previously performed proteomics studies using the same model. Using ddPCR, we validated the expression of seven genes associated with the risk of primary open-angle glaucoma. These results not only provide support for the pathogenic ECM model of steroid-induced glaucoma, but also demonstrate that the pathologic changes induced by this model are indeed found at the transcriptional level. These findings further demonstrate that matrix changes significantly influence cell expression profiles, which enable further understanding of the molecular mechanisms underlying glaucomatous changes in the TM. However, future studies with a larger and more diverse set of samples and longer time points are needed to confirm the utility of this model for mechanistic studies.</p></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"248 ","pages":"Article 110069"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of dexamethasone-induced matrices on the TM transcriptome\",\"authors\":\"Keerti Soundappan ,&nbsp;Jingwen Cai ,&nbsp;Hongfang Yu ,&nbsp;Kamesh Dhamodaran ,&nbsp;Hasna Baidouri ,&nbsp;Janice A. Vranka ,&nbsp;Hongyan Xu ,&nbsp;Vijaykrishna Raghunathan ,&nbsp;Yutao Liu\",\"doi\":\"10.1016/j.exer.2024.110069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pathologic bidirectional interactions between the extracellular matrix (ECM) and cells within the human trabecular meshwork (hTM) contribute to ocular hypertension. An <em>in vitro</em> model is needed to study these cell-matrix interactions and their effect on outflow homeostasis. This study aimed to determine whether pathogenic ECM derived from dexamethasone (DEX)-treated hTM cultures induces clinically relevant glaucoma-like changes in healthy hTM cells at the transcriptional level. Corneoscleral rims from non-glaucoma donors were used to isolate primary hTM cells after validation according to the consensus recommendations for TM culture. Normal hTM cells (n = 5) were plated on a coverslip and treated with 100 nM DEX or ethanol for four weeks. These cultures were then decellularized, plated with primary hTM cells, and allowed to grow for another 72 h. RNA was extracted from these hTM cells for stranded total RNA-Seq. Sequencing libraries prepared using the Zymo-Seq RiboFree Total RNA library kit were pooled and sequenced using Illumina NovaSeq 6000. After quality control, sequence reads were aligned to the human genome build hg19. Differential expression (DE) analyses were performed using paired multi-factorial ANOVA. The expression of several DE genes associated with glaucoma (<em>ANGPTL2, PDE7B, C22orf23, COL4A1, ADAM12, IFT122, SEMA6C</em>) was validated using EvaGreen-based Droplet Digital PCR (ddPCR) assays. Gene ontology analyses of the DE genes were performed using the PANTHER and NDEx IQA databases, and functional analyses were performed with the DAVID Bioinformatics software. Using a cutoff of p-value &lt;0.05 and fold change ≥2.0, our differential analysis identified 267 up- and 135 down-regulated genes in DEX-induced ECM-treated cells compared to the control. These differentially expressed genes were found to play a significant role in pathways such as cytokine and oxidative stress-induced inflammation, integrin signaling, matrix remodeling, and angiogenesis. These findings were further supported by previously performed proteomics studies using the same model. Using ddPCR, we validated the expression of seven genes associated with the risk of primary open-angle glaucoma. These results not only provide support for the pathogenic ECM model of steroid-induced glaucoma, but also demonstrate that the pathologic changes induced by this model are indeed found at the transcriptional level. These findings further demonstrate that matrix changes significantly influence cell expression profiles, which enable further understanding of the molecular mechanisms underlying glaucomatous changes in the TM. However, future studies with a larger and more diverse set of samples and longer time points are needed to confirm the utility of this model for mechanistic studies.</p></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"248 \",\"pages\":\"Article 110069\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014483524002902\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524002902","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外基质(ECM)与人体小梁网(hTM)内细胞之间的病理性双向相互作用会导致眼压升高。需要一种体外模型来研究这些细胞-基质相互作用及其对眼球流出平衡的影响。本研究旨在确定地塞米松(DEX)处理过的 hTM 培养物中的致病性 ECM 是否会在转录水平上诱导健康 hTM 细胞发生与临床相关的青光眼样变化。根据TM培养的共识建议,从非青光眼供体的角膜巩膜边缘分离出原代hTM细胞。将正常的 hTM 细胞(n=5)培养在盖玻片上,并用 100nM DEX 或乙醇处理四周。然后对这些培养物进行脱细胞处理,与原代 hTM 细胞一起培养,并让其再生长 72 小时。从这些 hTM 细胞中提取 RNA,用于链式总 RNA 序列分析。使用 Zymo-Seq RiboFree 总 RNA 文库试剂盒制备的测序文库汇集在一起,并使用 Illumina NovaSeq 6000 测序。经过质量控制后,序列读数与构建的人类基因组 hg19 进行了比对。使用配对多因素方差分析进行了差异表达(DE)分析。使用基于 EvaGreen 的液滴数字 PCR(ddPCR)检测验证了与青光眼相关的几个 DE 基因(ANGPTL2、PDE7B、C22orf23、COL4A1、ADAM12、IFT122、SEMA6C)的表达。使用 PANTHER 和 NDEx IQA 数据库对 DE 基因进行了基因本体分析,并使用 DAVID 生物信息学软件进行了功能分析。以 p-value
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of dexamethasone-induced matrices on the TM transcriptome

Pathologic bidirectional interactions between the extracellular matrix (ECM) and cells within the human trabecular meshwork (hTM) contribute to ocular hypertension. An in vitro model is needed to study these cell-matrix interactions and their effect on outflow homeostasis. This study aimed to determine whether pathogenic ECM derived from dexamethasone (DEX)-treated hTM cultures induces clinically relevant glaucoma-like changes in healthy hTM cells at the transcriptional level. Corneoscleral rims from non-glaucoma donors were used to isolate primary hTM cells after validation according to the consensus recommendations for TM culture. Normal hTM cells (n = 5) were plated on a coverslip and treated with 100 nM DEX or ethanol for four weeks. These cultures were then decellularized, plated with primary hTM cells, and allowed to grow for another 72 h. RNA was extracted from these hTM cells for stranded total RNA-Seq. Sequencing libraries prepared using the Zymo-Seq RiboFree Total RNA library kit were pooled and sequenced using Illumina NovaSeq 6000. After quality control, sequence reads were aligned to the human genome build hg19. Differential expression (DE) analyses were performed using paired multi-factorial ANOVA. The expression of several DE genes associated with glaucoma (ANGPTL2, PDE7B, C22orf23, COL4A1, ADAM12, IFT122, SEMA6C) was validated using EvaGreen-based Droplet Digital PCR (ddPCR) assays. Gene ontology analyses of the DE genes were performed using the PANTHER and NDEx IQA databases, and functional analyses were performed with the DAVID Bioinformatics software. Using a cutoff of p-value <0.05 and fold change ≥2.0, our differential analysis identified 267 up- and 135 down-regulated genes in DEX-induced ECM-treated cells compared to the control. These differentially expressed genes were found to play a significant role in pathways such as cytokine and oxidative stress-induced inflammation, integrin signaling, matrix remodeling, and angiogenesis. These findings were further supported by previously performed proteomics studies using the same model. Using ddPCR, we validated the expression of seven genes associated with the risk of primary open-angle glaucoma. These results not only provide support for the pathogenic ECM model of steroid-induced glaucoma, but also demonstrate that the pathologic changes induced by this model are indeed found at the transcriptional level. These findings further demonstrate that matrix changes significantly influence cell expression profiles, which enable further understanding of the molecular mechanisms underlying glaucomatous changes in the TM. However, future studies with a larger and more diverse set of samples and longer time points are needed to confirm the utility of this model for mechanistic studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信