Honey Panchal, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, L D Patel, Abhay Dharamsi, Asha Patel
{"title":"量子点功能化聚合物纳米粒子作为癌症治疗药物:一种先进的纳米医学策略","authors":"Honey Panchal, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, L D Patel, Abhay Dharamsi, Asha Patel","doi":"10.2174/0115680096299455240621070820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, sur-gery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquir-ing importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers contain-ing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics.</p><p><strong>Objective: </strong>This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics.</p><p><strong>Methods: </strong>This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method.</p><p><strong>Results: </strong>Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer.</p><p><strong>Conclusion: </strong>Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous at-tempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Dots Functionalized Polymeric Nanoparticles as Cancer Theranostics: An Advanced Nanomedicine Strategy.\",\"authors\":\"Honey Panchal, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, L D Patel, Abhay Dharamsi, Asha Patel\",\"doi\":\"10.2174/0115680096299455240621070820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, sur-gery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquir-ing importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers contain-ing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics.</p><p><strong>Objective: </strong>This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics.</p><p><strong>Methods: </strong>This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method.</p><p><strong>Results: </strong>Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer.</p><p><strong>Conclusion: </strong>Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous at-tempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.</p>\",\"PeriodicalId\":10816,\"journal\":{\"name\":\"Current cancer drug targets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current cancer drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096299455240621070820\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current cancer drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096299455240621070820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Quantum Dots Functionalized Polymeric Nanoparticles as Cancer Theranostics: An Advanced Nanomedicine Strategy.
Background: Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, sur-gery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquir-ing importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers contain-ing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics.
Objective: This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics.
Methods: This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method.
Results: Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer.
Conclusion: Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous at-tempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.
期刊介绍:
Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes and genes.
Current Cancer Drug Targets publishes original research articles, letters, reviews / mini-reviews, drug clinical trial studies and guest edited thematic issues written by leaders in the field covering a range of current topics on drug targets involved in cancer.
As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.