{"title":"细胞外囊泡介导的信号传导的性质和发展。","authors":"Amy H Buck, Esther N M Nolte-'t Hoen","doi":"10.1146/annurev-genet-111523-102725","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (<i>a</i>) EV release that serves a function for producing cells, (<i>b</i>) EV modification of the extracellular environment, and (<i>c</i>) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"409-432"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nature and Nurture of Extracellular Vesicle-Mediated Signaling.\",\"authors\":\"Amy H Buck, Esther N M Nolte-'t Hoen\",\"doi\":\"10.1146/annurev-genet-111523-102725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (<i>a</i>) EV release that serves a function for producing cells, (<i>b</i>) EV modification of the extracellular environment, and (<i>c</i>) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.</p>\",\"PeriodicalId\":8035,\"journal\":{\"name\":\"Annual review of genetics\",\"volume\":\" \",\"pages\":\"409-432\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genet-111523-102725\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-111523-102725","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
近十年来,人们已经清楚地认识到,细胞外囊泡(EVs)是生命系统中无处不在的组成部分。这些被膜包裹的小颗粒可以为释放、捕获它们或与它们共存于环境中的细胞赋予各种功能。我们利用生命系统中的实例建立了一个概念框架,将 EVs 发挥其功能的三种模式进行了分类:(a)EV 释放,为产生细胞提供功能;(b)EV 改变细胞外环境;以及(c)EV 与接收细胞相互作用并改变接收细胞。我们概述了 EVs 的固有特性(即其本质)以及环境和接收细胞中决定 EV 货物运输是否会导致功能性细胞反应的因素(即养育)。这篇综述拓宽了研究EV功能的背景,突出了EV的新特性,这些特性决定了EV在生物学中的作用,并将影响其在医学中的应用。
The Nature and Nurture of Extracellular Vesicle-Mediated Signaling.
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
期刊介绍:
The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.