通过正电场诱导电荷迁移加强各种二氧化钛晶体表面对臭氧的吸附:机理与理论研究。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
{"title":"通过正电场诱导电荷迁移加强各种二氧化钛晶体表面对臭氧的吸附:机理与理论研究。","authors":"","doi":"10.1016/j.envres.2024.119913","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the enhancement of ozone adsorption on diverse TiO<sub>2</sub> crystal interfaces through an innovative electrochemical modulation approach. The research focuses on the effects of applied electric field strength and reaction sites on ozone interfacial adsorption energies for Ti/Anatase TiO<sub>2</sub> (0 0 1) and Ti/Rutile TiO<sub>2</sub> (1 1 0) interfaces. The findings reveal that positive electric fields significantly enhance ozone adsorption on both interfaces, with adsorption energies increasing by up to 18% for Ti/Anatase TiO<sub>2</sub> (0 0 1) and 15% for Ti/Rutile TiO<sub>2</sub> (1 1 0). Notably, double water molecule sites (≡(H<sub>2</sub>O)<sub>2</sub>) play a crucial role in this enhancement process. The study demonstrates that the applied electric field alters the charge distribution at the TiO<sub>2</sub> catalytic interface, thereby increasing interfacial charge density and promoting charge migration to ozone. Furthermore, this process leads to enhanced overlap and hybridization between ≡(H<sub>2</sub>O)<sub>2</sub> sites and the s and p orbitals of ozone molecules, resulting in the formation of chemical bonds with lower Fermi levels. These comprehensive results demonstrate the broad applicability of the electrochemical interfacial ozone adsorption enhancement method across different crystal types and surfaces. Consequently, this study provides essential data to support the advancement of greener and more energy-efficient heterogeneous catalytic ozonation processes, potentially contributing to significant improvements in ozone-based water treatment technologies.</p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthened ozone adsorption through positive electric field-induced charge migration on various TiO2 crystal surfaces: A mechanistic and theoretical study\",\"authors\":\"\",\"doi\":\"10.1016/j.envres.2024.119913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the enhancement of ozone adsorption on diverse TiO<sub>2</sub> crystal interfaces through an innovative electrochemical modulation approach. The research focuses on the effects of applied electric field strength and reaction sites on ozone interfacial adsorption energies for Ti/Anatase TiO<sub>2</sub> (0 0 1) and Ti/Rutile TiO<sub>2</sub> (1 1 0) interfaces. The findings reveal that positive electric fields significantly enhance ozone adsorption on both interfaces, with adsorption energies increasing by up to 18% for Ti/Anatase TiO<sub>2</sub> (0 0 1) and 15% for Ti/Rutile TiO<sub>2</sub> (1 1 0). Notably, double water molecule sites (≡(H<sub>2</sub>O)<sub>2</sub>) play a crucial role in this enhancement process. The study demonstrates that the applied electric field alters the charge distribution at the TiO<sub>2</sub> catalytic interface, thereby increasing interfacial charge density and promoting charge migration to ozone. Furthermore, this process leads to enhanced overlap and hybridization between ≡(H<sub>2</sub>O)<sub>2</sub> sites and the s and p orbitals of ozone molecules, resulting in the formation of chemical bonds with lower Fermi levels. These comprehensive results demonstrate the broad applicability of the electrochemical interfacial ozone adsorption enhancement method across different crystal types and surfaces. Consequently, this study provides essential data to support the advancement of greener and more energy-efficient heterogeneous catalytic ozonation processes, potentially contributing to significant improvements in ozone-based water treatment technologies.</p></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124018188\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124018188","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过创新的电化学调制方法,探讨了如何增强不同二氧化钛晶体界面对臭氧的吸附。研究重点是应用电场强度和反应位点对 Ti/Anatase TiO2 (0 0 1) 和 Ti/Rutile TiO2 (1 1 0) 界面的臭氧界面吸附能的影响。研究结果表明,正电场显著增强了这两种界面对臭氧的吸附,Ti/Anatase TiO2 (0 0 1) 和 Ti/Rutile TiO2 (1 1 0) 的吸附能分别增加了 18% 和 15%。值得注意的是,双水分子位点(≡(H2O)2)在这一增强过程中起着至关重要的作用。研究表明,外加电场改变了二氧化钛催化界面的电荷分布,从而增加了界面电荷密度,促进了电荷向臭氧的迁移。此外,这一过程还导致≡(H2O)2位点与臭氧分子的s和p轨道之间的重叠和杂化增强,从而形成费米级较低的化学键。这些综合结果证明了电化学界面臭氧吸附增强方法在不同晶体类型和表面的广泛适用性。因此,这项研究为推动更环保、更节能的异相催化臭氧处理工艺提供了重要的数据支持,有可能为臭氧水处理技术的重大改进做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strengthened ozone adsorption through positive electric field-induced charge migration on various TiO2 crystal surfaces: A mechanistic and theoretical study

Strengthened ozone adsorption through positive electric field-induced charge migration on various TiO2 crystal surfaces: A mechanistic and theoretical study

This study investigates the enhancement of ozone adsorption on diverse TiO2 crystal interfaces through an innovative electrochemical modulation approach. The research focuses on the effects of applied electric field strength and reaction sites on ozone interfacial adsorption energies for Ti/Anatase TiO2 (0 0 1) and Ti/Rutile TiO2 (1 1 0) interfaces. The findings reveal that positive electric fields significantly enhance ozone adsorption on both interfaces, with adsorption energies increasing by up to 18% for Ti/Anatase TiO2 (0 0 1) and 15% for Ti/Rutile TiO2 (1 1 0). Notably, double water molecule sites (≡(H2O)2) play a crucial role in this enhancement process. The study demonstrates that the applied electric field alters the charge distribution at the TiO2 catalytic interface, thereby increasing interfacial charge density and promoting charge migration to ozone. Furthermore, this process leads to enhanced overlap and hybridization between ≡(H2O)2 sites and the s and p orbitals of ozone molecules, resulting in the formation of chemical bonds with lower Fermi levels. These comprehensive results demonstrate the broad applicability of the electrochemical interfacial ozone adsorption enhancement method across different crystal types and surfaces. Consequently, this study provides essential data to support the advancement of greener and more energy-efficient heterogeneous catalytic ozonation processes, potentially contributing to significant improvements in ozone-based water treatment technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信