揭示 Ni3S2 催化剂中的铁对氧进化反应电荷转移的促进作用

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-09-05 DOI:10.1002/smll.202404060
Haoyu Song, Xiaolu Xiong, Jinxiao Gao, Yue Hu, Qun Yang, Dehua Zheng, Jingxuan Hao, Xiao Lin, Linjuan Zhang, Jian-Qiang Wang
{"title":"揭示 Ni3S2 催化剂中的铁对氧进化反应电荷转移的促进作用","authors":"Haoyu Song,&nbsp;Xiaolu Xiong,&nbsp;Jinxiao Gao,&nbsp;Yue Hu,&nbsp;Qun Yang,&nbsp;Dehua Zheng,&nbsp;Jingxuan Hao,&nbsp;Xiao Lin,&nbsp;Linjuan Zhang,&nbsp;Jian-Qiang Wang","doi":"10.1002/smll.202404060","DOIUrl":null,"url":null,"abstract":"<p>In recent years, catalysts based on transition metal sulfides have garnered extensive attention due to their low cost and excellent electrocatalytic activity in the alkaline oxygen evolution reaction. Here, the preparation of Fe-doped Ni<sub>3</sub>S<sub>2</sub> via a one-step hydrothermal approach is reported by utilizing inexpensive transition metals Ni and Fe. In an alkaline medium, Fe–Ni<sub>3</sub>S<sub>2</sub> exhibits outstanding electrocatalytic activity and stability for the OER, and the current density can reach 10 mA cm<sup>−2</sup> with an overpotential of 163 mV. In addition, Pt/C||Fe–Ni<sub>3</sub>S<sub>2</sub> is used as the membrane electrode of the anion exchange membrane water electrolyzer, which is capable of providing a current density of 650 mA cm<sup>−2</sup> at a cell voltage of 2.0 V, outperforming the benchmark Ir/C. The principle is revealed that the doping of Fe enhances the electrocatalytic water decomposition ability of Ni<sub>3</sub>S<sub>2</sub> by in situ Raman and in situ X-ray absorption fine structure. The results indicate that the doping of Fe decreases the charge density near Ni atoms, which renders Fe–Ni<sub>3</sub>S<sub>2</sub> more favorable for the adsorption of OH<sup>−</sup> and the formation of <sup>*</sup>OO<sup>−</sup> intermediates. This work puts forward an effective strategy to significantly improve both the alkaline OER activity and stability of low-cost electrocatalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 48","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Promotion of Fe in Ni3S2 Catalyst on Charge Transfer for the Oxygen Evolution Reaction\",\"authors\":\"Haoyu Song,&nbsp;Xiaolu Xiong,&nbsp;Jinxiao Gao,&nbsp;Yue Hu,&nbsp;Qun Yang,&nbsp;Dehua Zheng,&nbsp;Jingxuan Hao,&nbsp;Xiao Lin,&nbsp;Linjuan Zhang,&nbsp;Jian-Qiang Wang\",\"doi\":\"10.1002/smll.202404060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, catalysts based on transition metal sulfides have garnered extensive attention due to their low cost and excellent electrocatalytic activity in the alkaline oxygen evolution reaction. Here, the preparation of Fe-doped Ni<sub>3</sub>S<sub>2</sub> via a one-step hydrothermal approach is reported by utilizing inexpensive transition metals Ni and Fe. In an alkaline medium, Fe–Ni<sub>3</sub>S<sub>2</sub> exhibits outstanding electrocatalytic activity and stability for the OER, and the current density can reach 10 mA cm<sup>−2</sup> with an overpotential of 163 mV. In addition, Pt/C||Fe–Ni<sub>3</sub>S<sub>2</sub> is used as the membrane electrode of the anion exchange membrane water electrolyzer, which is capable of providing a current density of 650 mA cm<sup>−2</sup> at a cell voltage of 2.0 V, outperforming the benchmark Ir/C. The principle is revealed that the doping of Fe enhances the electrocatalytic water decomposition ability of Ni<sub>3</sub>S<sub>2</sub> by in situ Raman and in situ X-ray absorption fine structure. The results indicate that the doping of Fe decreases the charge density near Ni atoms, which renders Fe–Ni<sub>3</sub>S<sub>2</sub> more favorable for the adsorption of OH<sup>−</sup> and the formation of <sup>*</sup>OO<sup>−</sup> intermediates. This work puts forward an effective strategy to significantly improve both the alkaline OER activity and stability of low-cost electrocatalysts.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 48\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202404060\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202404060","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于过渡金属硫化物的催化剂因其低成本和在碱性氧进化反应中出色的电催化活性而受到广泛关注。本文利用廉价的过渡金属 Ni 和 Fe,通过一步水热法制备了掺杂 Fe 的 Ni3S2。在碱性介质中,Fe-Ni3S2 对氧进化反应具有出色的电催化活性和稳定性,电流密度可达 10 mA cm-2,过电位为 163 mV。此外,Pt/C|||Fe-Ni3S2 被用作阴离子交换膜水电解槽的膜电极,在槽电压为 2.0 V 时可提供 650 mA cm-2 的电流密度,优于基准的 Ir/C。通过原位拉曼和原位 X 射线吸收精细结构揭示了掺杂 Fe 增强 Ni3S2 电催化水分解能力的原理。结果表明,Fe 的掺杂降低了 Ni 原子附近的电荷密度,从而使 Fe-Ni3S2 更有利于 OH- 的吸附和 *OO- 中间产物的形成。这项工作为显著提高低成本电催化剂的碱性 OER 活性和稳定性提出了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Promotion of Fe in Ni3S2 Catalyst on Charge Transfer for the Oxygen Evolution Reaction

Unveiling the Promotion of Fe in Ni3S2 Catalyst on Charge Transfer for the Oxygen Evolution Reaction

Unveiling the Promotion of Fe in Ni3S2 Catalyst on Charge Transfer for the Oxygen Evolution Reaction

In recent years, catalysts based on transition metal sulfides have garnered extensive attention due to their low cost and excellent electrocatalytic activity in the alkaline oxygen evolution reaction. Here, the preparation of Fe-doped Ni3S2 via a one-step hydrothermal approach is reported by utilizing inexpensive transition metals Ni and Fe. In an alkaline medium, Fe–Ni3S2 exhibits outstanding electrocatalytic activity and stability for the OER, and the current density can reach 10 mA cm−2 with an overpotential of 163 mV. In addition, Pt/C||Fe–Ni3S2 is used as the membrane electrode of the anion exchange membrane water electrolyzer, which is capable of providing a current density of 650 mA cm−2 at a cell voltage of 2.0 V, outperforming the benchmark Ir/C. The principle is revealed that the doping of Fe enhances the electrocatalytic water decomposition ability of Ni3S2 by in situ Raman and in situ X-ray absorption fine structure. The results indicate that the doping of Fe decreases the charge density near Ni atoms, which renders Fe–Ni3S2 more favorable for the adsorption of OH and the formation of *OO intermediates. This work puts forward an effective strategy to significantly improve both the alkaline OER activity and stability of low-cost electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信